MATRIX RINGS OVER *-REGULAR RINGS AND PSEUDO-RANK FUNCTIONS

Pere Ara

In this paper we obtain a characterization of those *-regular rings whose matrix rings are *-regular satisfying LP $\stackrel{*}{\sim}$ RP. This result allows us to obtain a structure theorem for the *-regular self-injective rings of type I which satisfy LP $\stackrel{*}{\sim}$ RP matricially.

Also, we are concerned with pseudo-rank functions and their corresponding metric completions. We show, amongst other things, that the LP $\stackrel{*}{\sim}$ RP axiom extends from a unit-regular *-regular ring to its completion with respect to a pseudo-rank function. Finally, we show that the property LP $\stackrel{*}{\sim}$ RP holds for some large classes of *-regular self-injective rings of type II.

All rings in this paper are associative with 1.

Let R be a ring with an involution *. Recall that * is said to be *n*-positive definite if $\sum_{i=1}^{n} x_i x_i^* = 0$ implies $x_1 = \cdots = x_n = 0$. The involution * is said to be proper if it is 1-positive definite; and if * is *n*-definite positive for all *n*, then we say that * is positive definite.

Recall than an element $e \in R$ is said to be a projection if $e^2 = e^* = e$ and R is called a Rickart *-ring if for every $x \in R$ there exists a projection e in R generating the right annihilator of x, that is $\iota(x) = eR$. Because of the involution, we have $\ell(x) = Rf$ for some projection f. Notice that $\iota(x) \cap x^*R = 0$, hence the involution * is proper and R is nonsingular. The above projections e, f depend on x only, 1 - e (1 - f)is called the right (left) projection of x and, as usual, we shall write 1 - e = RP(x), 1 - f = LP(x).

If R is a *-ring, we denote by P(R) the set of projections of R partially ordered by $e \le f$ iff ef = e. Thus, if $e \le f$ we have $eR \subseteq fR$ and $Re \subseteq Rf$. Recall [2, pg. 14] that if R is Rickart, then P(R) is a lattice.

Two idempotents e, f of a ring R are said to be *equivalent*, $e \sim f$, if there exist $x \in eRf$, $y \in fRe$ such that xy = e, yx = f. If e, f are projections in a ring with involution and we can choose $y = x^*$ then e, fare said to be *-*equivalent*, $e \stackrel{*}{\sim} f$. A ring is *directly finite* if $e \sim 1$ implies e = 1. A ring with involution is said to be *finite* if $e \stackrel{*}{\sim} 1$ implies e = 1.