CONVERGENCE FOR THE SQUARE ROOT OF THE POISSON KERNEL

PETER SJOGREN

Let X be a symmetric space and f an integrable function on its **boundary 3** *X.* **The O-Poisson integral** *P^o f* **is the function on** *X* **obtained** by integrating f against the square root of the Poisson kernel. We give **Fatou theorems saying that the normalized function** *P^o f/P^o l* **converges** almost everywhere to f on ∂X . Many such results are known for **λ-Poisson integrals** $P_{\lambda} f$ with λ in the positive Weyl chamber. But the case $\lambda = 0$ is different, since larger regions of convergence can be used. **Some of our results are general, some are given for the bidisk or SL(3, R)/SO(3). The paper extends previous results by the author for the disk and the bidisk.**

1. Introduction. Let $P = P(z, e^{i\theta})$ denote the Poisson kernel in the unit disk **D**. If f is an L^1 function on $T = \partial D$ and $\lambda \in \mathbb{R}$, the λ -Poisson integral of f is

$$
P_{\lambda}f(z)=\int_{\mathbf{T}} P(z,e^{i\theta})^{\lambda+1/2}f(e^{i\theta}) d\theta.
$$

It is an eigenfunction of the hyperbolic Laplacian in D, with eigenvalue $4\lambda^2 - 1$. The corresponding normalized λ -Poisson integral is $\mathscr{P}_{\lambda} f =$ $P_{\lambda} f/P_{\lambda} 1$, where 1 is the constant function on T. Assume $\lambda \ge 0$. Then $\mathscr{P}_{\lambda}f(z) \rightarrow f(e^{i\theta})$ as $z \rightarrow e^{i\theta}$, uniformly for continuous f . This is not true when $\lambda < 0$.

Let $f \in L^1$. For $\lambda > 0$ it is known that $\mathcal{P}_{\lambda} f$ tends nontangentially to f a.e. in T. This means that one lets $z \to e^{i\theta}$ satisfying a condition $|\arg z - \theta| < \text{const.} (1 - |z|).$ But when $\lambda = 0$, more is true. In fact, $\mathscr{P}_0 f(z) \to f(e^{i\theta})$ as $z \to e^{i\theta}$, $|\arg z - \theta| < \text{const.}$ $(1 - |z|) \log(1 - |z|)^{-1}$ for a.a. *θ,* see Sjδgren [16]. We call this weakly tangential convergence; it is false for $\mathcal{P}_{\lambda} f, \ \lambda > 0$. J. Taylor has found a simple description of it in terms of the hyperbolic metric.

In this paper, we shall give some convergence results for $\mathcal{P}_0 f$ in symmetric spaces, most of which are not valid for other $\mathscr{P}_{\lambda} f$. For rank 1 spaces, the generalization of weakly tangential convergence is rather straightforward, see Theorem 5.4 below. A metric description of the approach region appearing here is also given. Korányi and Picardello [11]