CONVERGENCE FOR THE SQUARE ROOT OF THE POISSON KERNEL

Peter Sjögren

Let X be a symmetric space and f an integrable function on its boundary ∂X . The 0-Poisson integral $P_0 f$ is the function on X obtained by integrating f against the square root of the Poisson kernel. We give Fatou theorems saying that the normalized function $P_0 f/P_0 1$ converges almost everywhere to f on ∂X . Many such results are known for λ -Poisson integrals $P_{\lambda} f$ with λ in the positive Weyl chamber. But the case $\lambda = 0$ is different, since larger regions of convergence can be used. Some of our results are general, some are given for the bidisk or SL(3, **R**)/SO(3). The paper extends previous results by the author for the disk and the bidisk.

1. Introduction. Let $P = P(z, e^{i\theta})$ denote the Poisson kernel in the unit disk **D**. If f is an L^1 function on $\mathbf{T} = \partial \mathbf{D}$ and $\lambda \in \mathbf{R}$, the λ -Poisson integral of f is

$$P_{\lambda}f(z) = \int_{\mathbf{T}} P(z, e^{i\theta})^{\lambda+1/2} f(e^{i\theta}) d\theta.$$

It is an eigenfunction of the hyperbolic Laplacian in **D**, with eigenvalue $4\lambda^2 - 1$. The corresponding normalized λ -Poisson integral is $\mathscr{P}_{\lambda}f = P_{\lambda}f/P_{\lambda}1$, where 1 is the constant function on **T**. Assume $\lambda \geq 0$. Then $\mathscr{P}_{\lambda}f(z) \rightarrow f(e^{i\theta})$ as $z \rightarrow e^{i\theta}$, uniformly for continuous f. This is not true when $\lambda < 0$.

Let $f \in L^1$. For $\lambda > 0$ it is known that $\mathscr{P}_{\lambda}f$ tends nontangentially to f a.e. in **T**. This means that one lets $z \to e^{i\theta}$ satisfying a condition $|\arg z - \theta| < \operatorname{const.}(1 - |z|)$. But when $\lambda = 0$, more is true. In fact, $\mathscr{P}_0 f(z) \to f(e^{i\theta})$ as $z \to e^{i\theta}$, $|\arg z - \theta| < \operatorname{const.}(1 - |z|)\log(1 - |z|)^{-1}$ for a.a. θ , see Sjögren [16]. We call this weakly tangential convergence; it is false for $\mathscr{P}_{\lambda}f$, $\lambda > 0$. J. Taylor has found a simple description of it in terms of the hyperbolic metric.

In this paper, we shall give some convergence results for $\mathscr{P}_0 f$ in symmetric spaces, most of which are not valid for other $\mathscr{P}_{\lambda} f$. For rank 1 spaces, the generalization of weakly tangential convergence is rather straightforward, see Theorem 5.4 below. A metric description of the approach region appearing here is also given. Korányi and Picardello [11]