A STUDY OF REGULARITY PROBLEM OF HARMONIC MAPS

GUOJUN LIAO

In this paper we study the regularity problem of harmonic maps between closed compact manifolds (M^n, g) and (N^m, h) in dimensions $n \ge 3$.

1. Introduction. Harmonic maps are critical points of the energy functional. For technical convenience we assume, by virtue of the Nash imbedding theorem, that the target manifold N is isometrically imbedded in the smallest Euclidean space \mathbf{R}^k . At the end of this section we will discuss the independence of our definitions on the imbedding of N in \mathbf{R}^k .

DEFINITION (1.1). A map $u = (u^1, u^2, ..., u^k)$: $M \to \mathbf{R}^k$ is said to belong to the Sobolev space $L_1^2(M, \mathbf{R}^k)$ if for i = 1, 2, ..., k

$$\int_M \left|\nabla u^{\imath}\right|^2 dV < \infty$$

where $|\nabla u^i|$ is the covariant derivative, in local coordinates,

$$|\nabla u^{\iota}|^{2}(x) = g^{\alpha\beta}(x) \cdot \partial_{\alpha}u^{\iota} \cdot \partial_{\beta}u^{\iota},$$

dV is the volume element of M. For $u \in L_1^2(M, \mathbb{R}^k)$ one defines its energy as

$$E(u) = \sum_{i=1}^{k} \int_{M} \left| \nabla u^{i} \right|^{2} dV = \int_{M} \left| \nabla u \right|^{2} dV.$$

DEFINITION (1.2). A map u is said to belong to $L_1^2(M, N)$ if $u \in L_1^2(M, \mathbb{R}^k)$ and if $u(x) \in N$, a.e. $x \in M$.

REMARK. $L_1^2(M, \mathbf{R}^k)$ with the usual norm

$$|u|_{1,2} = \left(E(u) + \sum_{i=1}^{k} \int_{M} |u^{i}|^{2} dV\right)$$

is a separable Hilbert space. $L_1^2(M, N)$ has strong and weak topologies induced from that of $L_1^2(M, \mathbf{R}^k)$. Moreover, the set

$$\left\{ u \in L^2_1(M, N) : |u|_{1,2} \le C \right\}$$

is weakly compact in $L_1^2(M, \mathbf{R}^k)$.