SHIFTS OF INTEGER INDEX ON THE HYPERFINITE II₁ FACTOR

Geoffrey L. Price

In this paper we consider shifts on the hyperfinite II_1 factor arising as a generalization of a construction of Powers. We determine the conjugacy classes of certain of these shifts.

1. Introduction. Let R be the hyperfinite II₁ factor with normalized trace tr. A shift α on R is an identity-preserving *-endomorphism which satisfies $\bigcap_{m\geq 1} \alpha^m(R) = \mathbb{C}1$. We say that α has shift index n if the subfactor $\alpha(R)$ has the same index $n = [R: \alpha(R)]$ in R as defined by Jones, in [2].

In [3] Powers considered shifts of index 2 on R. These were constructed using functions $\sigma: \mathbb{N} \cup \{0\} \rightarrow \{-1, 1\}$ and sequences $\{u_j: j \in \mathbb{N}\}$ of self-adjoint unitaries satisfying $u_i u_j = \sigma(|i - j|)u_j u_i$. If $A(\sigma)$ is the *-algebra generated by the $\{u_j\}$ and tr is the normalized trace on $A(\sigma)$ defined by $\operatorname{tr}(w) = 0$ for any non-trivial word in the u_i , the GNS construction $(\pi_{\operatorname{tr}}, H_{\operatorname{tr}}, \Omega_{\operatorname{tr}})$ gives rise to the von Neumann algebra $M = \pi_{\operatorname{tr}}(A(\sigma))''$. Different characterizations were given in [3] and [4] for M to be the hyperfinite factor R. In [4] it was shown this is the case if and only if the sequence $\{\ldots, \sigma(2), \sigma(1), \sigma(0), \sigma(1), \sigma(2), \ldots\}$ is aperiodic. For this case, the shift α on M = R defined by the relations $\alpha(\pi_{\operatorname{tr}}(u_i)) = \pi_{\operatorname{tr}}(u_{i+1})$ has index 2. In [3] it was shown that the σ -sequence above is a complete conjugacy invariant for α . (We say shifts α, β are conjugate if there exists an automorphism γ of R such that $\alpha = \gamma \cdot \beta \cdot \gamma^{-1}$.)

Motivated by [3], Choda in [1] considered shifts of index *n*, defined on *R* by $\alpha(u_j) = u_{j+1}$, for a sequence of unitaries $\{u_j\}$ generating *R*, and satisfying $(u_j)^{n} = 1$, $u_1u_{j+1} = \sigma(j)u_{j+1}u_1$, where $\sigma \colon \mathbb{N} \cup \{0\} \rightarrow$ $\{1, \exp(2\pi i/n)\}$. In this setting and under the assumption $\alpha(R)' \cap R =$ **C1** she characterizes the normalizer $N(\alpha)$ of α (see Definition 3.4) and the unitary α -generators of *R*.

In this paper we generalize some of the results of [1,3,4]. In §2 we consider, for a fixed *n*, algebras generated by sequences $\{u_j\}$ of unitaries, of order *n*, and satisfying $u_1u_{j+1} = \sigma(j)u_{j+1}u_1$ for functions $\sigma \colon \mathbb{N} \cup \{0\} \to \Omega_n$, the set of *n*th roots of unity. We determine