ON MATRICIALLY NORMED SPACES

Edward G. Effros and Zhong-jin Ruan

Abstract

Arveson and Wittstock have proved a "non-commutative HahnBanach Theorem" for completely bounded operator-valued maps on spaces of operators. In this paper it is shown that if T is a linear map from the dual of an operator space into a C^{*}-algebra, then the usual operator norm of T coincides with the completely bounded norm. This is used to prove that the Arveson-Wittstock theorem does not generalize to "matricially normed spaces". An elementary proof of the Arveson-Wittstock result is presented. Finally a simple bimodule interpretation is given for the "Haagerup" and "matricial" tensor products of matricially normed spaces.

1. Introduction. A function space V on a set X is a linear subspace of the bounded complex functions on X. With the uniform norm, this is a normed vector space. Conversely, any (complex) normed vector space V may be realized as a function space on the closed unit ball X of the dual space V^{*}. Thus one may regard a normed vector space as simply an abstract function space.

An operator space V on a Hilbert space H is a linear subspace of the bounded operators on H. For each $n \in \mathbf{N}$, the operator norm associated with H^{n} determines a distinguished norm on the $n \times n$ matrices over V. The second author recently gave an abstract characterization for the operator spaces by taking into consideration these systems of matrix norms. The operator spaces V are characterized among the "matricially normed spaces" (see $\S 2$), by the " L^{∞}-property": given matrices $v=\left[v_{i j}\right], w=\left[w_{k l}\right]$ with $v_{i j}, w_{k l} \in V$,

$$
\|v \oplus w\|=\max \{\|v\|,\|w\|\} .
$$

On the other hand, the dual of an operator space is canonically an " L^{1} matricially normed space", in the sense that its matrix norms satisfy

$$
\|v \oplus w\|=\|v\|+\|w\| .
$$

In this paper we shall begin a systematic study of the matricially normed spaces. Our main results are:
(a) We show in $\S 2$ that if $\varphi: V \rightarrow W$ is a linear map from an L^{1} matricially normed space to an operator space, then the completely

