POSITIVE ANALYTIC CAPACITY BUT ZERO BUFFON NEEDLE PROBABILITY

Peter W. Jones and Takafumi Murai

There exists a compact set of positive analytic capacity but zero Buffon needle probability.

1. Introduction. For a compact set E in the complex plane C, $H^{\infty}(E^{c})$ denotes the Banach space of bounded analytic functions outside E with supremum norm $\|\cdot\|_{H^{\infty}(E^{c})}$. The analytic capacity of E is defined by

$$\gamma(E) = \sup\{|f'(\infty)|; f \in H^{\infty}(E^{c}), \|f\|_{H^{\infty}(E^{c})} \le 1\},\$$

where $f'(\infty) = \lim_{z\to\infty} z(f(z) - f(\infty))$ [1, p. 6]. Let $\mathscr{L}(r,\theta)$ $(r > 0, -\pi < \theta \le \pi)$ denote the straight line defined by the equation $x\cos\theta + y\sin\theta = r$. The Buffon length of E is defined by

$$Bu(E) = \iint_{\{(r,\theta);\mathscr{L}(r,\theta)\cap E\neq\emptyset\}} dr d\theta.$$

Vitushkin [7] asked whether two classes of null-sets concerning $\gamma(\cdot)$ and $Bu(\cdot)$ are same or not (cf. [2], [3]). Mattila [4] showed that these two classes are different. (He showed that the class of null-sets concerning $Bu(\cdot)$ is not conformal invariant. Hence his method does not give the information about the implication between these two classes.) The second author [5] showed that, for any $0 < \varepsilon < 1$, there exists a compact set E_{ε} such that $\gamma(E_{\varepsilon}) = 1$, $Bu(E_{\varepsilon}) \leq \varepsilon$. The purpose of this note is to show

THEOREM. There exists a compact set E_0 such that $\gamma(E_0) = 1$, $Bu(E_0) = 0$.

2. Cranks. To construct E_0 , we begin by defining cranks. The 1dimension Lebesgue measure is denoted by $|\cdot|$. For a finite union Eof segments in C, its length is also denoted by |E|. For $\rho > 0, z \in C$ and a set $E \subset C$, we write $[\rho E + z] = \{\rho \zeta + z; \zeta \in E\}$. With $0 \le \varphi < 1$ and a segment $J \subset C$ parallel to the x-axis, we associate the closed segment $J(\varphi)$ of the same midpoint as J, parallel to the x-axis and of