CONTROLLED HOMOTOPY TOPOLOGICAL STRUCTURES

C. Bruce Hughes

Let $p: E \to B$ be a locally trivial fiber bundle between closed manifolds where $\dim E \geq 5$ and B has a handlebody decomposition. A controlled homotopy topological structure (or a controlled structure, for short) is a map $f: M \to E$ where M is a closed manifold of the same dimension as E and f is a $p^{-1}(\varepsilon)$ -equivalence for every $\varepsilon > 0$ (see §2). It is the purpose of this paper to develop an obstruction theory which answers the question: when is f homotopic to a homeomorphism, with arbitrarily small metric control measured in B? This theory originated with an idea of W. C. Hsiang that a controlled structure gives rise to a cross-section of a certain bundle over B, associated to the Whitney sum of $p: E \to B$ and the tangent bundle of B.

1. Introduction. In §3 we define a semi-simplicial complex $\mathcal{S}(p:E\to B)$, called the space of controlled structures on $p:E\to B$. Roughly, an n-simplex of $\mathcal{S}(p:E\to B)$ is an n-parameter family of controlled structures on $p:E\to B$. The study of the homotopy relation in $\mathcal{S}(p:E\to B)$ was initiated in [H₁, §8]. For example, if $f:M\to E$ is a controlled structure, then f is $p^{-1}(\varepsilon)$ -homotopic to a homeomorphism for every $\varepsilon>0$ if and only if [f]=[id] in $\pi_0\mathcal{S}(p:E\to B)$. The higher homotopy groups of $\mathcal{S}(p:E\to B)$ have analogous implications concerning parameterized versions of this problem (see §3). The main objective then is to understand the homotopy type of $\mathcal{S}(p:E\to B)$. This is accomplished as follows.

Let $\hat{p}: TB \oplus E \to B$ be the Whitney sum of the tangent bundle of B and E. This new bundle has fiber $\mathbf{R}^m \times F$ where $m = \dim B$ and F is the fiber of $p: E \to B$. In §5 we construct an associated bundle $\tilde{p}: \tilde{E} \to B$ with fiber $\mathcal{S}(\pi: \mathbf{R}^m \times F \to \mathbf{R}^m)$ where $\pi: \mathbf{R}^m \times F \to \mathbf{R}^m$ denotes projection. The main result of this paper is the following theorem.

THEOREM 1. The space of controlled structures $\mathcal{S}(p:E\to B)$ is homotopy equivalent to the semi-simplicial complex of cross-sections of $\tilde{p}: \tilde{E}\to B$.