FINITELY GENERATED ALGEBRAS AND ALGEBRAS OF SOLUTIONS TO PARTIAL DIFFERENTIAL EQUATIONS

JOHN T. ANDERSON

We consider two types of uniform algebras A on the closure $\overline{\Omega}$ of a domain $\Omega \subset \mathbb{R}^n$: those generated by finitely many smooth functions and those consisting of solutions to Lu = 0 where L is a smooth complex vector field on Ω . Under certain conditions we prove the existence of one of two types of analytic structure in the maximal ideal space M_A of such an algebra: local foliations of Ω by complex manifolds on which the functions in the algebra are holomorphic, or foliations of a subset of $M_A \setminus \overline{\Omega}$ by analytic disks. Some open questions suggested by this line of inquiry are discussed.

1. Introduction. It is a central problem in the theory of uniform algebras to uncover general hypotheses on a proper subalgebra A of C(X) which imply the existence of analytic structure in the maximal ideal space M_A of A (see [**Br**] or [**G**]). The purpose of this paper is to exhibit under certain conditions such analytic structure in the maximal ideal spaces of the following two classes of algebras:

1. Finitely generated algebras. Suppose f_1, \ldots, f_k are C^{∞} functions in a neighborhood of the closure of a bounded, smoothly bounded domain $\Omega \subset \mathbb{R}^n$, and suppose that f_1, \ldots, f_k separate points on $\overline{\Omega}$. Let $\mathbb{C}[f_1, \ldots, f_k]$ be the algebra of polynomials in f_1, \ldots, f_k , and let Abe the closure of $\mathbb{C}[f_1, \ldots, f_k]$ in $C(\overline{\Omega})$. Then A is a uniform algebra on $\overline{\Omega}$. Assuming that A is nowhere locally dense in the continuous functions, and that $F = (f_1, \ldots, f_k)$ is an imbedding of $\overline{\Omega}$ into \mathbb{C}^k , then we obtain analytic structure in M_A (Theorem 3.2).

To study the algebra of polynomials in f_1, \ldots, f_k , we consider the map $F = (f_1, \ldots, f_k)$ of $\overline{\Omega}$ into \mathbb{C}^k , which induces an isomorphism of A with P(K), the algebra of uniform limits of polynomials in (z_1, \ldots, z_k) on $K = F(\overline{\Omega})$. If F is a diffeomorphism, then we can use well-known results concerning real submanifolds of \mathbb{C}^k to study the algebra P(K). These include a theorem of Hörmander and Wermer [H-W] on polynomial approximation on totally real submanifolds of \mathbb{C}^n , a theorem of Freeman on complex foliations of real submanifolds of \mathbb{C}^n , and a