DEHN-SURGERY ALONG A TORUS T^2 -KNOT

Zyun'iti Iwase

A T^2 -knot means a 2-torus embedded in a 4-manifold. We define torus T^2 -knots in the 4-sphere S^4 as a generalization of torus knots in S^3 . We classify them up to equivalence and study the manifolds obtained by Dehn-surgery along them.

1. Introduction. Dehn-surgery, which was introduced by Dehn [1], plays an important role in knot theory and 3-dimensional manifold theory. The classical Dehn-surgery is the operation of cutting off the tubular neighborhood $N = S^1 \times D^2$ of a knot in S^3 and of pasting it back via an element of π_0 Diff ∂N , which is isomorphic to GL₂Z. Gluck-surgery [2] along a 2-knot in S^4 is a 4-dimensional version of Dehn-surgery. In this version, $N = S^2 \times D^2$ and $\pi_0 \text{ Diff } \partial N = (\mathbb{Z}/2)^3$. $(\mathbb{Z}/2)^2$ corresponds to the orientation reversing diffeomorphisms of S^2 and ∂D^2 . Therefore Gluck-surgery yields at most one new manifold from one 2-knot and it is a homotopy 4-sphere (see [2]). Another 4-dimensional version is Dehn-surgery along a 2-torus embedded in S^4 [7], which we call a T^2 -knot in this paper. In this version, N = $T^2 \times D^2$ and $\pi_0 \text{ Diff} \partial N = \text{GL}_3 \mathbb{Z}$. Countably many manifolds are obtained from one T^2 -knot. A manifold obtained by Gluck-surgery is also obtained by Dehn-surgery along a T^2 -knot (see Proposition 3.5). Dehn-surgery along an unknot is studied in [7], [9]. See also [3].

In this paper, we define a *torus* T^2 -*knot* which is analogous to the torus knots in the classical knot theory, and classify them up to equivalence. Then we study the manifolds obtained by Dehn-surgeries along them.

Dehn-surgery along a torus knot is studied by Moser [8].

THEOREM 1.1. (Moser [8], Propositions 3.1, 3.2, 4.) Assume that a Dehn-surgery of type (α, β) is performed along k(p, q), the torus knot of type (p, q). Put $|\sigma| = |pq\beta - \alpha|$. The manifold obtained is denoted by M.

(i) If $|\sigma| \neq 0$, then M is a Seifert manifold with fibers of multiplicities p, q, $|\sigma|$.

(ii) If $|\sigma| = 1$, then M is a lens space $L(|\alpha|, \beta q^2)$.