PSEUDOCONVEX DOMAINS WITH PEAK FUNCTIONS AT EACH POINT OF THE BOUNDARY

Andrei Iordan

Under certain conditions, each point of the boundary of a smoothly bounded weakly pseudoconvex domain D in \mathbb{C}^n is a peak point of $A^{\infty}(D)$.

1. Introduction. Let D be a bounded pseudoconvex domain with C^{∞} boundary. We denote by $A^{\infty}(D)$ the set of holomorphic functions in D which have a C^{∞} extension to \overline{D} . A compact subset E of ∂D is a peak set for $A^{\infty}(D)$ if there exists $f \in A^{\infty}(D)$ such that f = 0 on E and Re f > 0 on $\overline{D} \setminus E$. Such a function will be called a strong support function for E. If $E = \{p\}$, p is a peak point for $A^{\infty}(D)$.

In [6], [18] it is proved that each point of a strictly pseudoconvex domain is a peak point for $A^{\infty}(D)$ with a strong support function holomorphic in the neighborhood of \overline{D} and in [7], [17] it is proved that each strongly pseudoconvex point of a weakly pseudoconvex domain with C^{∞} boundary is a peak point for $A^{\infty}(D)$. These results fail in the case of weakly pseudoconvex domains [4], [13]. Other results about smoothly varying peaking functions in pseudoconvex domains may be found in [1], [5], [14].

If D is strictly pseudoconvex, Chaumat and Chollet proved in [3] that each closed subset of a peak set for $A^{\infty}(D)$ is a peak set for $A^{\infty}(D)$. The assertion is also true for bounded pseudoconvex domains in \mathbb{C}^2 of finite type [15] and for bounded pseudoconvex domains in \mathbb{C}^2 with isolated degeneracies [11] or with (NP) property [12].

In [16] is given an example of convex domain in \mathbb{C}^2 not of finite type whose weakly pseudoconvex boundary points form a line segment which is a peak set for $A^{\infty}(D)$, but there is a point which is not a peak point for $A^{\infty}(D)$.

Here we prove that, under certain assumptions, each point of the boundary of a weakly pseudoconvex domain is a peak point for $A^{\infty}(D)$.

Some results of this paper were announced at the International Workshop Geometric and Quantitative Complex Analysis, Wuppertal 1986.