ON THE GLOBAL DIMENSION OF FIBRE PRODUCTS

Ellen Kirkman and James Kuzmanovich

In this paper we will sharpen Wiseman's upper bound on the global dimension of a fibre product [Theorem 2] and use our bound to compute the global dimension of some examples. Our upper bound is used to prove a new change of rings theorem [Corollary 4]. Lower bounds on the global dimension of a fibre product seem more difficult; we obtain a result [Proposition 12] which allows us to compute lower bounds in some special cases.

A commutative square of rings and ring homomorphisms

$$\begin{array}{ccc} R & \stackrel{i_1}{\longrightarrow} & R_1 \\ i_2 \downarrow & & \downarrow j_1 \\ R_2 & \stackrel{j_2}{\longrightarrow} & R' \end{array}$$

is said to be a *Cartesian* square if given $r_1 \in R_1$, $r_2 \in R_2$ with $j_1(r_1) = j_2(r_2)$ there exists a unique element $r \in R$ such that $i_1(r) = r_1$ and $i_2(r) = r_2$. We will assume that j_2 is a surjection so that results of Milnor [M] apply. The ring R is called a *fibre product* (or pullback) of R_1 and R_2 over R'.

The homological properties of a fibre product R have been studied previously. Milnor [M, Chapter 2] has characterized projective modules over such a ring R. Facchini and Vamos [FV] have obtained analogues of Milnor's theorems for injective and flat modules. Wiseman [W] has used Milnor's results to obtain an upper bound on lgldim R; in particular, Wiseman's results show that R has finite left global dimension whenever the rings R_i have finite left global dimension and $fd(R_i)_R$ are both finite, where $fd(R_i)_R$ represents the flat dimension of R_i as a right R-module. Vasconcelos [V, Chapters 3 and 4] and Greenberg [G1 and G2] have studied commutative rings of finite global dimension which are fibre products and have used their results to classify commutative rings of global dimension 2. Osofsky's example of a commutative local ring of finite global dimension having zero divisors can be described as a fibre product (see [V, p. 29–30]). Fibre products