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ON THE GLOBAL DIMENSION OF FIBRE PRODUCTS

ELLEN KIRKMAN AND JAMES KUZMANOVICH

In this paper we will sharpen Wiseman’s upper bound on the global
dimension of a fibre product [Theorem 2] and use our bound to com-
pute the global dimension of some examples. Our upper bound is
used to prove a new change of rings theorem [Corollary 4]. Lower
bounds on the global dimension of a fibre product seem more diffi-
cult; we obtain a result [Proposition 12] which allows us to compute
lower bounds in some special cases.

A commutative square of rings and ring homomorphisms

R—L>R1

i l lj.

Ry — R
J2
is said to be a Cartesian square if given r; € Ry, r, € R, with ji(r;) =
J2(ry) there exists a unique element r € R such that i;(r) = r; and
ir(r) = r,. We will assume that j, is a surjection so that results of
Milnor [M] apply. The ring R is called a fibre product (or pullback)
of R; and R, over R'.

The homological properties of a fibre product R have been studied
previously. Milnor [M, Chapter 2] has characterized projective mod-
ules over such a ring R. Facchini and Vamos [FV] have obtained ana-
logues of Milnor’s theorems for injective and flat modules. Wiseman
[W] has used Milnor’s results to obtain an upper bound on Igldim R;
in particular, Wiseman’s results show that R has finite left global di-
mension whenever the rings R; have finite left global dimension and
fd(R;)r are both finite, where fd(R;)r represents the flat dimension
of R; as a right R-module. Vasconcelos [V, Chapters 3 and 4] and
Greenberg [G1 and G2] have studied commutative rings of finite global
dimension which are fibre products and have used their results to clas-
sify commutative rings of global dimension 2. Osofsky’s example of a
commutative local ring of finite global dimension having zero divisors
can be described as a fibre product (see [V, p. 29-30]). Fibre products
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