THE ADAMS SPECTRAL SEQUENCE OF THE REAL PROJECTIVE SPACES

RALPH L. COHEN, WEN-HSIUNG LIN AND MARK E. MAHOWALD

In this paper we study the mod 2 Adams spectral sequence for the infinite real projective space $P = \mathbb{R}P^{\infty}$.

We recall ([1]) that the spectral sequence starts with

$$E_2^{s,t} = \operatorname{Ext}_{\mathcal{A}}^{s,t}(\widetilde{H}^*(P), \mathbb{Z}/2)$$

and converges to the stable homotopy $_2\pi_*^s(P) = \pi_*^s(P)$ where A denotes the mod 2 Steenrod algebra and $\tilde{H}^*(P)$ is the reduced mod 2 cohomology of P. We simply write $\operatorname{Ext}_A^{s,t}(P)$ for $\operatorname{Ext}_A^{s,t}(\tilde{H}^*(P), \mathbb{Z}/2)$ and occasionally we abbreviate by ASS for "Adams spectral sequence".

Roughly, our main results consist of (1) a complete description of $\operatorname{Ext}_{A}^{s,*}(P)$ for $0 \le s \le 2$ and also for s = 3 modulo indecomposable elements, (2) the determination of which classes in a substantial portion of $\operatorname{Ext}_{A}^{1,*}(P)$ can detect homotopy elements in $\pi_{*}^{s}(P)$ (Adams's Hopf invariant Theorem solves the problem for $\operatorname{Ext}_{A}^{0,*}(P)$) and (3) the construction of some infinite families in $\pi_{*}^{s}(P)$ at low Adams filtrations analogous to the ones in the 2-adic stable homotopy of spheres $_{2}\pi_{*}^{s}$ constructed in [9], [12] and [18], [22].

These Ext calculations were necessary in the work on the Kervaire invariant in [12]. The results are not surprising, but proving them is surprisingly difficult. In particular we make use of a calculational method that may be of independent interest.

To precisely state the results we first recall that the cohomology $\operatorname{Ext}_{A}^{*,*} = \operatorname{Ext}_{A}^{*,*}(\mathbb{Z}/2, \mathbb{Z}/2)$ of the Steenrod algebra A is a commutative bigraded algebra over $\mathbb{Z}/2$ and that $\operatorname{Ext}_{A}^{*,*}$ for $0 \le s \le 3$ is generated by $h_i \in \operatorname{Ext}_{A}^{1,2^i}$ $(i \ge 0)$ and $c_i \in \operatorname{Ext}_{A}^{3,2^{i+3}+2^{i+1}+2^i}$ with relations $h_i h_{i+1} = 0, h_{i+1}^3 = h_i^2 h_{i+2}$ and $h_i h_{i+2}^2 = 0$ where h_i corresponds to the Steenrod square $\operatorname{Sq}^{2^i} \in A$. The mod 2 cohomology $H^*(P)$ is a polynomial algebra $\mathbb{Z}/2[x]$ in one variable x with deg x = 1 on which A acts by $\operatorname{Sq}^k x^i = {i \choose k} x^{i+k}$. One easily proves that $\{x^{2^{i-1}} | i \ge 1\}$ is a minimal set of generators of $\tilde{H}^*(P)$ over A. The non-zero class in $\operatorname{Ext}_{A}^{0,2^{i-1}}(P) = \mathbb{Z}/2$ corresponding to $x^{2^{i-1}}$ is denoted by \hat{h}_i . The first part of the