THE ADAMS SPECTRAL SEQUENCE OF THE REAL PROJECTIVE SPACES

Ralph L. Cohen, Wen-Hsiung Lin and Mark E. Mahowald

> In this paper we study the mod 2 Adams spectral sequence for the infinite real projective space $P=\mathbf{R} P^{\infty}$.

We recall ([1]) that the spectral sequence starts with

$$
E_{2}^{s, t}=\mathrm{Ext}_{A}^{s, t}\left(\widetilde{H}^{*}(P), \mathbf{Z} / 2\right)
$$

and converges to the stable homotopy ${ }_{2} \pi_{*}^{s}(P)=\pi_{*}^{s}(P)$ where A denotes the mod 2 Steenrod algebra and $\tilde{H}^{*}(P)$ is the reduced $\bmod 2$ cohomology of P. We simply write Ext $A_{A}^{s, t}(P)$ for $\operatorname{Ext}_{A}^{s, t}\left(\tilde{H}^{*}(P), \mathbf{Z} / 2\right)$ and occasionally we abbreviate by ASS for "Adams spectral sequence".

Roughly, our main results consist of (1) a complete description of $\operatorname{Ext}_{A}^{s, *}(P)$ for $0 \leq s \leq 2$ and also for $s=3$ modulo indecomposable elements, (2) the determination of which classes in a substantial portion of $\mathrm{Ext}_{A}^{1, *}(P)$ can detect homotopy elements in $\pi_{*}^{s}(P)$ (Adams's Hopf invariant Theorem solves the problem for $\operatorname{Ext}_{A}^{0, *}(P)$) and (3) the construction of some infinite families in $\pi_{*}^{s}(P)$ at low Adams filtrations analogous to the ones in the 2 -adic stable homotopy of spheres ${ }_{2} \pi_{*}^{s}$ constructed in [9], [12] and [18], [22].

These Ext calculations were necessary in the work on the Kervaire invariant in [12]. The results are not surprising, but proving them is surprisingly difficult. In particular we make use of a calculational method that may be of independent interest.

To precisely state the results we first recall that the cohomology $\mathrm{Ext}_{A}^{* * *}=\mathrm{Ext}_{A}^{* *}(\mathbf{Z} / 2, \mathbf{Z} / 2)$ of the Steenrod algebra A is a commutative bigraded algebra over $\mathbf{Z} / 2$ and that $\mathrm{Ext}_{A}^{* * *}$ for $0 \leq s \leq 3$ is generated by $h_{i} \in \operatorname{Ext}_{A}^{1,2^{i}}(i \geq 0)$ and $c_{i} \in \operatorname{Ext}_{A}^{32^{2+3}+2^{2^{+1}}+2^{i}}$ with relations $h_{i} h_{i+1}=$ $0, h_{i+1}^{3}=h_{i}^{2} h_{i+2}$ and $h_{i} h_{i+2}^{2}=0$ where h_{i} corresponds to the Steenrod square $\mathrm{Sq}^{2 i} \in A$. The $\bmod 2$ cohomology $H^{*}(P)$ is a polynomial algebra $\mathbf{Z} / 2[x]$ in one variable x with $\operatorname{deg} x=1$ on which A acts by $\mathrm{Sq}^{k} x^{i}=\binom{i}{k} x^{i+k}$. One easily proves that $\left\{x^{2^{i}-1} \mid i \geq 1\right\}$ is a minimal set of generators of $\tilde{H}^{*}(P)$ over A. The non-zero class in $\operatorname{Ext}_{A}^{0,2^{i}-1}(P)=$ $\mathbf{Z} / 2$ corresponding to $x^{2^{i}-1}$ is denoted by \hat{h}_{i}. The first part of the

