ANNULAR BUNDLES

Abstract

Marco Abate

This paper is devoted to the study of a particular kind of complex manifold with non-trivial topology: holomorphic fiber bundles with fibers biholomorphic to plane annuli.

0. Introduction. In recent years, some work has been done on function theory in complex manifolds with non-trivial topology. Two different approaches have been developed, a variational one and a purely complex-theoretical one.

The origins of the former (due essentially to Bedford and Burns; cf. [BBu] and [B1]) lie in the work of Landau and Osserman [LO1, LO2] on multiply connected Riemann surfaces. They defined an invariant norm on the homology group of the surface, using a particular family of harmonic functions. The solution of an associated extremal problem is a harmonic measure of the surface. The invariance properties of this function can be used to get several results in function theory, for instance the classification of the plane annuli.

Bedford and Burns, in [BBu], developed a similar theory in bounded domains of \mathbf{C}^{n} of the form $D_{1} \backslash D_{2}$, where D_{1} and D_{2} were smooth strongly pseudoconvex domains with $D_{2} \subset \subset D_{1}$. They used an invariant norm on the homology groups defined by Chern et al. in [CLN], and the solution of a particular complex Monge-Ampère equation as harmonic measure. Bedford, in [B1], studied complex manifolds of (complex) dimension n with $H_{n}(X, \mathbf{R}) \neq(0)$ using several other invariant norms on $H_{n}(X, \mathbf{R})$.

The second approach (due essentially to Bedford, again, and Mok; cf. [B2] and [Mo]) is based on the classical theory of Stein manifolds, and is devoted to the study of Stein manifolds of (complex) dimension n with $H_{n}(X, \mathbf{R}) \neq(0)$. In particular, Mok proved that, under some mild assumptions, a holomorphic map of such a Stein manifold into itself inducing an isomorphism of $H_{n}(X, \mathbf{R})$ is an automorphism.

These methods do not work on manifolds with non-trivial homology only in low dimensions. For instance, we do not get any result on the simplest example of non-contractible strongly pseudoconvex domain,

