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THEORY OF BOUNDED GROUPS AND
THEIR BOUNDED COHOMOLOGY

D. W. PAUL

Bounded cohomology Hζ can be defined for groups and for topo-
logical spaces. Recent work has shown that Hζ (M) of a topolog-
ical space M depends only on Π\(M). In this paper we consider
a new concept—a bounded group—and thereby expand the defini-
tion of bounded cohomology. We prove that bounded cohomology
groups are themselves bounded groups and develop their properties in
lower dimensions. In particular, elements of ff£(G, A) classify bound-
ed group extensions of G by A. As an application of the theory of
bounded groups we construct the Lyndon spectral sequence. The re-
sult obtained is Theorem 3, which states that Hζ(H A)G =b Hg(G, A),
when G/H is finite.

1. Definitions and observations. We introduce the ideas of a bound-
ed group and a bounded group homomorphism. We want to ensure
that the mappings (x, y) -* xy and x -» x~ι are themselves bounded
homomorphisms. Thus, we define a norm (actually a pseudo-norm)
on a group G to be a function || | |: G -+ R satisfying, for non-negative
constants M, c, Mf, c',

(i) ||JC|| > 0, for all x in G,

(n)\\xy\\<M(\\x\\ + \\y\\) + c,
(nϊ)\\χ-i\\<M'\\x\\ + c>.

G together with its norm is a bounded group. A homomorphism /
between two bounded groups G and H is bounded if and only if there
exist non-negative constants Mf and Cf such that

\\f(g)\\<Mf\\g\\ + cf, for all* in G.

Two norms on G are equivalent if there exists a bounded isomorphism
/ between the two bounded groups; i.e., both / and f~ι must be
bounded. The symbol for a bounded isomorphism will be =$. It is
worth noting that the composition of two bounded homomorphisms
is bounded.

The cross-product of two bounded groups, G x H, is a bounded
group under the natural norm defined as follows:

IK* Λ)ll = 11*11 + 11*11.
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