ON A THEOREM DUE TO CASSELS

JOSÉ M. SOUTO MENÉNDEZ

Using properties of one-dimensional formal groups, a proof is given of a theorem on the valuations of the torsion points of elliptic curves defined over *p*-adic fields.

1. Introduction. The aim of the present note is to give a proof of Theorem 5, due to Cassels, on the valuations of the torsion points of an elliptic curve defined over a local field K of characteristic zero. Cassels's proof relies on the addition formulas for the Weierstrass \wp and \wp' functions. The one given here follows from the properties of the torsion points of one-dimensional formal groups defined over the ring of integers of K.

The reader could also look at Oort [5] for another approach to Cassels' theorem.

2. Torsion points of formal groups. In the following we denote by K a local field, finite extension of the field Q_p of *p*-adic numbers, with ring of integers A; we assume that the normalized valuation v of K is extended to the algebraic closure \overline{K} of K. We denote by \mathfrak{p}_K (resp. $\mathfrak{p}_{\overline{K}}$) the maximal ideal of A (resp. of the valuation ring of \overline{K}), and by e = v(p) the ramification index of K/Q_P .

Let F be a one-dimensional formal group of finite height $h \ge 1$, defined over A; as usual (see [3]), for each $a \in Z_p$ we denote by $[a](X) \in A[[X]]$ the unique endomorphism of F such that $[a](X) = aX + \cdots$. The group of points $F(\mathfrak{p}_{\overline{K}})$ of F with values in \overline{K} has a structure of a module over Z_p , by means of the operation $a \cdot x = [a](x)$, $a \in Z_p$, $x \in F(\mathfrak{p}_{\overline{K}})$; $F(\mathfrak{p}_K)$ is a sub- Z_p -module of $F(\mathfrak{p}_{\overline{K}})$.

Let $[p](X) = \sum_{i=1}^{\infty} a_i X^i$ $(a_1 = p)$ be the "multiplication by p" in the formal group F; setting $q = p^h$, one has $a_i \in \mathfrak{p}_K$ if $i = 1, \ldots, q - 1$ and $v(a_q) = 0$. We shall be interested in the valuations of the torsion points $x \in F(\mathfrak{p}_{\overline{K}})$. The most convenient thing is to consider the Newton polygon of the series [p](X), that is the lower convex envelope of the points $(i, v(a_i)) \in \mathbb{R}^2$ $(i \ge 1)$.

If $P_0 = (1, e)$, $P_1 = (q_1, e_1), \dots, P_m = (q, 0)$ are the vertices of such a polygon (where $e_i = v(a_{q_i})$), the slopes are the negative of the numbers