shown to be rigid in 5.2 , this is correct. Thus the applications in the remainder of the proof of Proposition 5.3 are valid.

University of Washington
Seattle, WA 98195

AND
University of Oregon
Eugene, OR 97403

ERRATA
 CORRECTION TO SUMS OF PRODUCTS OF POWERS OF GIVEN PRIME NUMBERS

R. Tijdeman and Lianxiang Wang

Volume 132 (1988), 177-193

Lemma 3(b) is false and hence the proof of Theorem 3 needs revision. We present a corrected version of Lemma 3(b) and a proof of Theorem 3 based on it.

Lemma 3(b). If $3^{b} \mid 2^{a}+1$, then $a \geq 3^{b-1}$.
Proof. If $3^{b} \mid 2^{a}+1$, then $2^{2 a}-1=\left(2^{a}+1\right)\left(2^{a}-1\right) \equiv 0\left(\bmod 3^{b}\right)$. Since 2 is a primitive root of 3^{b} for any $b \in \mathbf{N}, \varphi\left(3^{b}\right) \mid 2 a$ where $\varphi(x)$ is the Euler's function. Hence $3^{b-1} \mid a$.

Proof of Theorem 3. Without loss of generality we may assume that $x \geq 1, y \geq 0, z \geq 2, w \geq 1$. By (1.3) and Lemma 3(b), we have $x \leq z$ and $z \geq 3^{\min (y, w)-1}$. We derive from (1.3) that $2^{x} \mid 3^{w}-1$ and therefore $2^{x-2} \leq w$. Hence

$$
x<(\log 2)^{-1} \log w+2 .
$$

We distinguish between two cases.

