SPACES OF CONSTANT PARA-HOLOMORPHIC SECTIONAL CURVATURE

P. M. GADEA AND A. MONTESINOS AMILIBIA

We consider the sectional curvatures for metric $(J^4 = 1)$ -manifolds, and study particularly the general expression of the metric and almostproduct structure in normal coordinates for para-Kaehlerian manifolds of constant para-holomorphic sectional curvature. We also introduce models of such spaces.

1. Introduction. A metric $(J^4 = 1)$ -manifold (cfr. [3], [11]) is a pseudo-Riemannian manifold (M^n, g) together with a (1, 1) tensor field J such that $J^4 = 1$ and whose characteristic polynomial is $(x-1)^{r_1}(x+1)^{r_2}(x^2+1)^s$ with $r_1 + r_2 + 2s = n$; also, the tensor fields g and J are related by one of the following relations:

(i) g(JX, Y) + g(X, JY) = 0 (then g is necessarily pseudo-Riemannian and $r_1 = r_2$);

(ii) g is Riemannian and g(JX, JY) = g(X, Y).

In the first case it is said that g is an aem (<u>a</u>dapted in the <u>e</u>lectromagnetic sense <u>m</u>etric), because this situation generalizes in a sense that of Mishra [8] and Hlavatý [4]; in the second one, g is called arm (<u>a</u>dapted <u>R</u>iemannian <u>m</u>etric).

In this note we consider, g being an aem, the J-Kaehler manifolds, that is $(J^4 = 1)$ -manifolds such that $\nabla J = 0$, where ∇ is the Levi-Civita connection of g, and study the J-sectional curvature which generalizes the usual holomorphic-type sectional curvatures. We define the spaces of constant J-sectional curvature, and prove a lemma of Schur type. Also, we obtain explicitly the models corresponding to the situation of an aem g and $J^2 = 1$.

2. Terminology. We shall use the following terminology:

 $(J^4 = 1)$ -manifold: the pair (M^n, J) , where J is a (1, 1) tensor field such that $J^4 = 1$ and whose characteristic polynomial is $(x-1)^{r_1}(x+1)^{r_2}(x^2+1)^s$ with $r_1 + r_2 + 2s = n$.

e-metric $(J^4 = 1)$ -manifold: a $(J^4 = 1)$ -manifold (M^n, J) together with an aem, that is a pseudo-Riemannian metric g such that g(JX, Y) + g(X, JY) = 0.