WEIGHTS INDUCED BY HOMOGENEOUS POLYNOMIALS

Воо RIM CHOE

Let B be the unit ball and S the unit sphere in \mathbb{C}^n $(n \geq 2)$. Let σ be the unique normalized rotation-invariant Borel measure on S and m the normalized area measure on \mathbb{C} .

We first prove that if Λ is a holomorphic homogeneous polynomial on \mathbb{C}^n normalized so that Λ maps B onto the unit disk U in \mathbb{C} and if $\mu = \sigma[(\Lambda|_S)^{-1}]$, then $\mu \ll m$ and the Radon-Nikodym derivative $d\mu/dm$ is radial and positive on U. Then we obtain the asymptotic behavior of $d\mu/dm$ for a certain, but not small, class of functions Λ . These results generalize two recent special cases of P. Ahern and P. Russo. As an immediate consequence we enlarge the class of functions for which Ahern-Rudin's Paley-type gap theorems hold.

1. Introduction. Let n be a positive integer. Write $B=B_n$ for the unit ball in \mathbb{C}^n and let $S=S_n=\partial B_n$. When n=1, we use the notation U and T in place of B_1 and S_1 , respectively. We shall let $\sigma=\sigma_n$ denote the unique normalized rotation-invariant Borel measure on S and S and S and S the normalized area measure on S. The symbol S stands for the class of holomorphic homogeneous polynomials S on S normalized so that S be S and S and S are the normalized so that S be S and S are the normalized so that S and S are the normalized so that S and S are the normalized so that S are the nor

To begin with, let us look at some special cases which motivated the main results of this paper. We have the following "change-of-variables" formula for $\Lambda \in P_n$ of degree 1 [Ru, Section 1.4]:

(1)
$$\int_{S} \psi \circ \Lambda^* d\sigma = (n-1) \int_{U} \psi(\lambda) (1-|\lambda|^2)^{n-2} dm(\lambda).$$

Here $\Lambda^* = \Lambda|_S$ and ψ denotes an arbitrary nonnegative Borel function on U. The similar integral formula for $\Lambda(z) = z_1^2 + \cdots + z_n^2$ has been recently proved by P. Russo [**Rus**]:

(2)
$$\int_{S} \psi \circ \Lambda^* d\sigma = (n-1)/2 \int_{U} \psi(\lambda) (1-|\lambda|^2)^{(n-3)/2} dm(\lambda).$$

Also, P. Ahern [A] has shown that if $\Lambda(z) = n^{n/2} z_1 \cdots z_n$, then

(3)
$$\int_{S} \psi \circ \Lambda^{*} d\sigma = \int_{U} \psi(\lambda) w(\lambda) dm(\lambda)$$