APÉRY BASIS AND POLAR INVARIANTS OF PLANE CURVE SINGULARITIES

Angel Granja

Let C be an irreducible plane algebroid curve singularity over an algebraically closed field K, defined by a power series $f \in K[[X, Y]]$. In this paper, we study those power series $h \in K[[X, Y]]$ for which the intersection multiplicity $(f \cdot h) = \dim_K(K[[X, Y]]/(f, y))$ is an element of the Apéry basis of the value semigroup for C. We prove a factorization theorem for these power series, obtaining strong properties of their irreducible factors. In particular we show that some results by M. Merle and R. Ephraim are a special case of this theorem.

Introduction. In this paper we denote by K an algebraically closed field of arbitrary characteristic.

Let C be an irreducible plane algebroid curve over K (i.e. C = Spec(R), where R = K[[X, Y]]/(f), with f irreducible). We will suppose $f \notin YK[[X, Y]]$ and we will write $n = \text{Ord}_x(f(X, 0))$.

We will denote by S(C) the semigroup of values of C (see [2], 11.0.1 and [3], 4.3.1), by $A_n = \{0 = a_0 < a_1 < \cdots < a_{n-1}\} = \{\min(S(C)n(k + n\mathbb{Z}_+); 0 \le k \le n-1\}$ the Apéry basis of S(C) relative to n (see [2], 1.1.1) and by $\{v_0, \ldots, v_r\}$ the n-sequence in S(C), where $v_0 = n$, and $v_i = \min\{v \in S(C); \gcd(v_0, v_1, \ldots, v_{i-1}) > \gcd(v_0, v_1, \ldots, v_{i-1}, v)\}$, $1 \le i \le r$ (see [1], 6.6, [2], 1.3.2 and [6]). (Note that $\gcd(v_0, \ldots, v_r) = 1$.)

The main objective of this work is the proof of the following theorem.

FACTORIZATION THEOREM. Let $h \in K[[X, Y]]$ be such that $0 \le k = Ord_x(h(X, 0)) \le n - 1$. Then $(f \cdot h) \le a_k$. Suppose $(f \cdot h) = a_k$. If $k = \sum_{0 \le q \le r} s_q(n/d_{q-1})$, where $d_q = gcd(v_0, \ldots, v_q)$, $(d_0 = v_0 = n, d_r = 1)$, $0 \le s_q \le r$ and $0 \le s_q \le d_{q-1}/d_q$, then

$$h = \prod_{1 \leq i \leq r} h_i$$
 and $h_i = \prod_{1 \leq j \leq m_i} h_{ij}$,

with h_{ij} either irreducible or unit in K[[X, Y]], $1 \le j \le m_i$, $1 \le i \le r$, and

(1)
$$\sum_{1 \le j \le m_i} \operatorname{Ord}_x(h_j(X, 0)) = s_i(n/d_{i-1}), \ 1 \le i \le r.$$