BANACH ALGEBRAS ASSOCIATED WITH SPHERICAL REPRESENTATIONS OF THE FREE GROUP

RYSZARD SZWARC

We prove that any spherical representation of the free group \mathbb{F} weakly contains the regular representation. Moreover C_π^* , the C^* -algebra associated with the spherical representation π , is a compact extension of the reduced C^* -algebra of \mathbb{F} . We also show that the standard projection onto radial functions admits extensions to C_π^* for a class of representations π of \mathbb{F} which includes spherical representations, as well as the regular representation and the universal representation.

Introduction. Let \mathbb{F}_r be a free group on r generators x_1, \ldots, x_r . Let μ_1 be the finitely supported probability measure equidistributed on $\{x_1^{\pm 1}, x_2^{\pm 1}, \ldots, x_r^{\pm 1}\}$. The operator of convolution by μ_1 is the analogue of the Laplace-Beltrami operator on Riemann rank one symmetric spaces. By [11] the l^1 -spectrum of μ_1 can be identified with the ellipse $E = \{z = x + iy \colon x^2 + (\frac{r}{r-1}y)^2 \le 1\}$. Any point z of E corresponds in one-to-one fashion to a spherical function ϕ_z the eigenfunction of μ_1 with eigenvalue z. We refer to [11], [7] for this subject.

For real z spherical functions are positive definite and give rise to unitary representations of \mathbb{F}_r . Basing our argument on a particular realisation of these representations and on the simplicity of the reduced C^* -algebra of \mathbb{F}_r [10], we prove that all spherical representations weakly contain the regular representation. Moreover the C^* -algebras associated with spherical representations are compact extensions of $C^*_{\text{red}}(\mathbb{F}_r)$, the C^* -algebra associated with the regular representation.

Finally we consider the standard projection onto radial functions on \mathbb{F}_r and we prove that it is bounded on any C^* -algebra associated with spherical functions.

Acknowledgment. I am grateful to Uffe Haagerup for suggesting the problem and for helpful discussions.

Spherical representations. Let \mathbb{F}_r be a free group on r generators $x_1, x_2, \ldots, x_r, r \geq 2$. Any element x of \mathbb{F}_r may be uniquely ex-