THE ISOMETRIES OF $H^{\infty}(E)$

PEI-KEE LIN

Let E be a uniformly convex and uniformly smooth complex Banach space. We prove that every onto isometry T on $H^\infty(E)$ is of the form

$$(TF)(z) = \mathcal{T}(F(t(z))) \qquad (F \in H^{\infty}(E), |z| < 1),$$

where $\mathcal F$ is an isometry from E onto E and t is a conformal map of the unit disc onto itself.

1. Introduction. Let H^{∞} denote the set of all bounded analytic functions in the open unit disc with the norm $\|f\|_{\infty} = \sup_{|z|<1} |f(z)|$. Since H^{∞} is a semi-simple commutative Banach algebra, the Gelfand transform $(f \to \hat{f})$ is an isometry from H^{∞} onto a subalgebra \widetilde{M} of C(Y) where Y is the maximal ideal space of H^{∞} . One can show [L-R-W]:

To every extreme point L of the unit ball $(H^{\infty})^*$ there corresponds a complex number α of absolute value 1 and a point $y \in Y$ (indeed, y is an element in the Choquet boundary of Y) such that

$$Lf = \alpha \hat{f}(y)$$
 $(f \in H^{\infty}).$

Using this result, K. deLeeuw, W. Rudin and J. Wermer ([L-R-W]; also see [N]) proved that every linear isometry T of H^{∞} onto H^{∞} is of the form

$$(Tf)(z) = \alpha f(t(z)) \qquad (f \in H^{\infty}, |z| < 1),$$

where α is a complex number of absolute value 1 and t is a conformal mapping of the unit disc onto itself. If E is a complex Banach space, then $H^{\infty}(E)$ denotes the set of all E-valued bounded analytic functions defined on the open unit disk Δ . We will show that there is a linear isometry from $H^{\infty}(E)$ onto a subspace \widetilde{M} of $C((Y, \text{weak* topology}) \times (U, \text{norm topology}))$ where U is the unit ball of E^* . M. Cambern [C1] proved that: If E is a finite dimensional complex Hilbert space, then

to every extreme point L of the unit ball of $(H^{\infty})^*$ there corresponds a point y in the Choquet boundary $B \subset Y$ of H^{∞} and a point e^* in