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ON MINIMAL AND MAXIMAL EIGENVALUE GAPS
AND THEIR CAUSES
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We consider quantum-mechanical potentials giving rise to mini-
mal (or maximal) eigenvalue gaps subject to LP constraints in n-
dimensions. We prove existence and characterization theorems for
optimizing potentials. The tunneling effect through a single barrier
is shown always to be the cause of minimal gaps, and in some cases
the gap minimizers are shown to be specific double-well potentials.

I. Introduction. Let Ω be a bounded, smooth domain in 3ίn , and
consider the Schrόdinger operator

H = -A+ V(x)

acting on L 2 (Ω), with zero Dirichlet boundary conditions. As is well
known, for reasonable potentials V the spectrum consists of eigen-
values {Ei}, conventionally numbered in an increasing sequence,

(1.1) - o o < £ Ί <E2 <E3 < ••• .

The eigenvalues correspond to the energy levels, in atomic units, of a
quantum particle in the potential energy V, imagined as +oo outside
Ω. We refer to E\ as the ground state, E2 as the first excited state,
and

(1.2) Γ = E2-Eι

as the fundamental gap.
Bounds on the fundamental gap have been the subject of a num-

ber of recent works [1], [23], [25], usually with assumptions imposed
on both V and Ω that can loosely be characterized as convex. If
R is a characteristic diameter of the problem, then with these as-
sumptions Γ can be no smaller than const. R~2. Without the con-
vex assumptions, on the other hand, exponentially small fundamental
gaps Γ = O(exp(- const. R)), are known to arise in double-well prob-
lems, owing to the tunneling effect, and also in problems on pinched
or dumbell-shaped domains [4], [19]. Recently, a pair of papers by
Kirsch and Simon [14], [15] established, roughly, that the fundamental
gap is bounded below by a polynomial in R times exp(- const. R),


