TWO APPLICATIONS OF THE UNIT NORMAL BUNDLE OF A MINIMAL SURFACE IN \mathbb{R}^N

Norio Ejiri

Dedicated to Professor Shingo Murakami on his sixtieth birthday

A Gauss parametrization of a minimal surface in \mathbb{R}^3 is well known. We prove a generalization.

THEOREM A. Let U be an open set of $S^N(1)$ and f a function on U such that

$$\Delta_S N_{(1)}f = -Nf$$

and 0 is an eigenvalue of Hess $f + f\langle , \rangle$ of multiplicity N-2, where \langle , \rangle is the metric of $S^N(1)$ and $\Delta_S N_{(1)}$ is the Laplacian of $S^N(1)$. Then the map of U into \mathbb{R}^{N+1} defined by

(*) $f\eta + \operatorname{grad} f$

is of rank 2 and gives a minimal surface, where η is the identity map on $S^{N}(1)$. Conversely, for a minimal surface M in \mathbb{R}^{N+1} , a neighborhood of each point of M without geodesic points has this representation.

If M is a complete orientable minimal surface of finite total curvature, then there is a global representation (*) of M. Using this idea, we obtain the following.

THEOREM B. Let M be a complete orientable minimal surface of finite total curvature in \mathbb{R}^{N+1} . Then there exist a positive real number c(N) depending on N such that

$$\operatorname{index}(M) \leq c(N) \int (-K) * 1_M,$$

where K is the Gauss curvature of M and $*1_M$ is the area form of M.

Theorem B gives an answer for an open question posed by Cheng and Tysk in [CY1]. After this paper was submitted, the author learned that Cheng and Tysk in [CT2] obtained a similar result as Theorem B by using another Gauss map (generalized Gauss map).