RANK-2 FANO BUNDLES OVER A SMOOTH QUADRIC Q_3

IGNACIO SOLS, MICHAŁ SZUREK, AND JAROSŁAW A. WIŚNIEWSKI

In the present paper we examine rank-2 stable bundles over Q_3 with $c_1=0$ and $c_2=2$ or 4.

This paper is a continuation of [7] where rank-2 Fano bundles over \mathbb{P}^3 and Q_3 were studied. Let us recall that a bundle \mathscr{E} is called Fano if its projectivization $\mathbb{P}(\mathscr{E})$ is a Fano manifold, i.e. a manifold with ample first Chern class $c_1(\mathbb{P}(\mathscr{E}))$. In the present paper we examine rank-2 stable bundles over Q_3 with $c_1=0$ and $c_2=2$ or 4. These are the cases whose knowledge was necessary to complete the classification of rank-2 Fano bundles over Q_3 . They are very different: if \mathscr{E} is stable with $c_1=0$, $c_2=2$ then its first twist $\mathscr{E}(1)$ is spanned by global sections (see Proposition 1), whereas if $c_2=4$ then for a general \mathscr{E} from a component in the moduli $\mathscr{E}(1)$ has no section at all (Proposition 3). We complete the classification of rank-2 Fano bundles over Q_3 . The results of §3 from [7] and of the present paper can be summarized in the following

THEOREM. Let $\mathscr E$ be a rank-2 Fano bundle over Q_3 . If $c_1\mathscr E=-1$ then $\mathscr E$ is either $\mathscr O\oplus\mathscr O(-1)$ or the spinor bundle $\underline E$. If $c_1\mathscr E=0$ then $\mathscr E$ is either $\mathscr O\oplus\mathscr O$, or $\mathscr O(-1)\oplus\mathscr O(1)$, or any stable bundle with $c_2=2$ (see a corollary in §1 for a complete description of such bundles).

Let us recall that the spinor bundle \underline{E} on an odd-dimensional quadric $Q_{2\nu+1}$ is the restriction of the universal 2^{ν} -bundle on the Grassmannian $\operatorname{Gr}(2^{\nu}, 2^{\nu+1})$. Then $\underline{E}^* = \underline{E}(1)$. On an even-dimensional quadric $Q_{2\nu}$, $\nu \geq 2$, there are two spinor bundles, corresponding to the two reguli of ν -planes. The following characterization of the bundles with no intermediate cohomology was proved in [1]:

THEOREM. For a vector bundle F on Q_n , $n \ge 2$, it is $H^i(F(l)) = 0$ for all 0 < i < n, $l \in \mathcal{Z}$, if and only if F is a direct sum of line bundles $\mathcal{O}(l)$ and of their tensor product with spinor bundles.