DIHEDRAL GROUP ACTIONS ON HOMOTOPY COMPLEX PROJECTIVE THREE SPACES

MARK HUGHES

Let D_{2m} be the dihedral group of order 2m. Given an odd prime m such that the projective class group of D_{2m} has 2-rank = 0, we construct smooth D_{2m} -actions on an infinite number of pairwise non-diffeomorphic (distinguished by Pontryagin class) manifolds each of which is homotopy equivalent to CP^3 . This is accomplished by applying equivariant surgery theory to normal maps created by an equivariant transversality argument.

1. Introduction. The question which we deal with here is: "Which finite groups can act on differentiably non-standard homotopy $\mathbb{C}P^3$'s?" We use equivariant surgery theory to construct dihedral group actions on an infinite number of differentiably distinct smooth manifolds which are homotopy equivalent to $\mathbb{C}P^3$.

According to [MY], there is a one-to-one correspondence between the integers and the set (actually, it is a group) of diffeomorphism classes of 6-dimensional, smooth, closed manifolds which are homotopy equivalent to $\mathbb{C}P^3$ (such manifolds shall hereafter be called homotopy $\mathbb{C}P^3$'s). For every integer k, there is a unique homotopy $\mathbb{C}P^3$, denoted X_k , with first Pontryagin class $P_1(X_k) = (4 + 24k)x^2$, where $x \in H^2(X_k)$ is a generator. Then, X_0 is the standard $\mathbb{C}P^3$. All actions shall be effective and smooth.

Some information is known about smooth finite group actions on homotopy $\mathbb{C}P^3$'s. For instance, infinitely many homotopy $\mathbb{C}P^3$'s admit a \mathbb{Z}_m -action for almost every prime number m. (For this, and other interesting results, we refer the reader to [DM].) On the other hand, in [M1], it is shown that if X_k admits a smooth, effective $\mathbb{Z}_m \times \mathbb{Z}_m \times \mathbb{Z}_m$ -action, for any odd prime m, then k = 0, i.e., $X_k = \mathbb{C}P^3$. (There is a more restricted version of this result for m = 2. For information about involutions on homotopy $\mathbb{C}P^3$'s, we refer the reader to [DMS].)

In this paper, we shall consider the case of dihedral group actions. To my knowledge, these are the first examples of non-abelian group