ARENS REGULARITY AND DISCRETE GROUPS

BRIAN FORREST

Let G be a locally compact group. Let $A_p(G)$ be the Herz algebra of G associated with $1 . We show that if <math>A_p(G)$ is Arens regular, then G is discrete. We also exhibit a number of sufficient conditions for such a group to be finite.

1. Introduction. Let G be a locally compact group. For $1 , let <math>A_p(G)$ denote the linear subspace of $C_0(G)$ consisting of all functions of the form $u(x) = \sum_{i=1}^{\infty} (f_i * \tilde{g}_i)^{\vee}$, where $f_i \in L_p(G)$, $g_i \in L_q(G)$, $\frac{1}{p} + \frac{1}{q} = 1$, $\sum_{i=1}^{\infty} ||f||_p ||g||_q < \infty$, $f^{\vee}(x) = f(x^{-1})$ and $\tilde{f}(x) = \overline{f(x^{-1})}$. $A_p(G)$ is a commutative Banach algebra with respect to pointwise multiplication and the norm

$$\|u\|_{A_p(G)} = \inf\left\{\sum_{i=1}^{\infty} \|f_i\|_p \|g_i\|_q |u(x)| = \sum_{i=1}^{\infty} (f_i * \tilde{g}_i)^{\vee}\right\}.$$

When p = 2, $A_2(G)$ is the Fourier algebra of G as introduced by Eymard in [7]. For general p, the algebras $A_p(G)$ were introduced and first studied by Herz [13].

In this paper we will study the structure of the second dual $A_p(G)^{**}$ as a Banach algebra with respect to the two Arens products. In particular, we will show that if $A_p(G)$ is Arens regular, then G is discrete. When p = 2, we show that for a large class of groups, Arens regularity will imply finiteness.

2. Preliminaries. Let G be a locally compact group with a fixed left Haar measure λ . For $1 \le p \le \infty$, let $L_p(G)$ be the usual Banach space of equivalence classes of p-integrable (or essentially bounded) functions on G. The algebras $A_p(G)$ for 1 will be asdefined in §1. When <math>p = 2 we will write A(G) for $A_2(G)$.

For $1 , let <math>PF_p(G)$ and $PM_p(G)$ denote the closure of $L_1(G)$, considered as an algebra of convolution operators on $L_p(G)$, with respect to the norm topology and the weak operator topology respectively in $\mathscr{B}(L_p(G))$, the bounded operators on $L_p(G)$. The space $PM_p(G)$ can be identified with the dual of $A_p(G)$ for each 1 [see 19, p. 94].