BOUNDARY BEHAVIOR OF A CONFORMAL MAPPING

John Marafino

Let D be a simply connected plane domain, not the whole plane. Let R^* denote those accessible boundary points of D such that D twists violently about them; that is, if $\alpha \in R^*$ and $w(\alpha)$ denotes its complex coordinate, then

 $\lim_{\substack{w \to \alpha \\ w \in D}} \inf \arg(w - w(\alpha)) = -\infty \quad \text{and} \quad \lim_{\substack{w \to \alpha \\ w \in D}} \sup \arg(w - w(\alpha)) = +\infty,$

where $\arg(w - w(\alpha))$ is defined and continuous in D. We show that if a certain geometric condition holds at each point of a set $W^* \subset R^*$, then W^* is a D-conformal null set. Let L_{ν} denote the ray with terminal point $w(\alpha)$, $\alpha \in R^*$, having inclination ν , $0 \le \nu < 2\pi$. Let m denote Lebesgue measure on L_{ν} and set

$$u(\nu) = \limsup_{r \to 0} \frac{m((L_{\nu} \cap D) \cap (w(\alpha), w(\alpha) + re^{i\nu}))}{r}$$

Let $W^* = \{ \alpha \in R^* : \text{there exists } L_{\nu_i}, i = 1, 2, 3, \text{ at } w(\alpha) \text{ such that } |\nu_i - \nu_j| = (2/3)\pi, 1 \le i < j \le 3, \text{ and } u(\nu_i) < 1 \text{ for } i = 1, 2, 3 \}.$

THEOREM. W^* is a D-conformal null set.

Introduction. Let D be a simply connected plane domain, not the whole plane, and let w = f(z) be a one to one conformal map from the open unit disk onto D. It is well-known that for almost every θ , $0 \le \theta < 2\pi$, f(z) has a finite radial limit $f(e^{i\theta})$ at $e^{i\theta}$. By [4, pp. 311-312] we also have for almost every θ that the image of the radius at $e^{i\theta}$ is a rectifiable curve. Thus, for almost every θ , $0 \le \theta < 2\pi$, the image of the radius at $e^{i\theta}$ determines a (ideal) rectifiably accessible boundary point α_{θ} of D whose complex coordinate $w(\alpha_{\theta}) = f(e^{i\theta})$ is finite. The set of all such α_{θ} is denoted by A^* . In fact, using Theorem 1 in [2, p. 37], Theorem 9.3 in [4, p. 268], and Theorem 10.9 in [4, p. 316], it follows that A^* is the set of all rectifiably accessible boundary points of D. On $D^* = D \cup A^*$ we define the arc-length distance l_{D^*} between two points as the infimum of the euclidean lengths of arcs that lie in D and join these two points.