L^{*p*}-FOURIER TRANSFORMS ON NILPOTENT LIE GROUPS AND SOLVABLE LIE GROUPS ACTING ON SIEGEL DOMAINS

JUNKO INOUE

We study Fourier transforms of L^p -functions (1 onnilpotent Lie groups and affine automorphism groups of Siegel do $mains. We get an estimate for the norm of the <math>L^p$ -Fourier transform for certain classes of nilpotent Lie groups. For affine automorphism groups, which are nonunimodular, we give an explicit definition of L^p -Fourier transform, and obtain an estimate for the norm.

Introduction. First of all, let us recall some known results of the L^p -Fourier transform on unimodular groups. For such groups, the classical Hausdorff-Young theorem was generalized by Kunze [13]. Following a description of Lipsman [14], we briefly mention the generalization. Let G be a separable locally compact unimodular group of type I, and \hat{G} be the unitary dual endowed with the Mackey Borel structure. Denote by dg a Haar measure on G, and by μ the Plancherel measure on \hat{G} associated with dg. That is, μ is uniquely determined by the abstract Plancherel formula; for $\varphi \in L^1(G) \cap L^2(G)$,

(0.1)
$$\int_{G} |\varphi(g)|^2 dg = \int_{\widehat{G}} \operatorname{tr}(\pi(\varphi)^* \pi(\varphi)) d\mu(\pi),$$

where $\pi(\varphi) = \int_G \varphi(g)\pi(g) dg$. We consider the Fourier transform \mathscr{P} to be a mapping of $L^1(G)$ to a space of μ -measurable field of bounded operators on \widehat{G} ; $(\mathscr{P}\varphi)(\pi) = \pi(\varphi)$, for $\varphi \in L^1(G)$, $\pi \in \widehat{G}$. Let 1 and <math>q = p/(p-1), and for a μ -measurable field of bounded operators F on \widehat{G} , let

$$\|F\|_{q} = \left(\int_{\widehat{G}} \|F(\pi)\|_{C_{q}}^{q} d\mu(\pi)\right)^{1/q},$$

where $||F(\pi)||_{C_q} = (\operatorname{tr}(F(\pi)^*F(\pi))^{q/2})^{1/q}$. Denote by $L^q(\widehat{G})$ the Banach space defined by the space of measurable fields F such that $||F||_q < \infty$ in the usual way (with norm $||\cdot||_q)$. Then the Hausdorff-Young type inequality

$$(0.2) \|\mathscr{P}\varphi\|_q \le \|\varphi\|_p$$