CONFORMAL DEFORMATIONS PRESERVING THE GAUSS MAP

ENALDO SILVA VERGASTA

In this work, given a conformal immersion $f: M^n \to \mathbb{R}^N$ of a Riemannian manifold M^n into a euclidean space \mathbb{R}^N , we establish conditions for the existence of another conformal immersion $\overline{f}: M^n \to \mathbb{R}^N$ with the same Gauss map as f. In particular, for n = 2 and N = 3, these conditions are described by means of a partial differential equation on the principal curvatures of f.

0. Introduction. Let M^n be a connected *n*-dimensional Riemannian manifold and let $f: M^n \to \mathbb{R}^N$ be a conformal immersion. We denote by $F: M^n \to G_{n,N}$ the *Gauss map* of f, which assigns to each point $p \in M^n$ the *n*-dimensional tangent space $f_*(T_pM)$ in the Grassmannian $G_{n,N}$. We consider the following problem: Under what conditions does there exist another conformal immersion $\overline{f}: M^n \to \mathbb{R}^N$ such that the Gauss map of \overline{f} coincides with the Gauss map of f, up to a congruence in $G_{n,N}$ induced by a congruence in \mathbb{R}^N ? When this occurs we say that \overline{f} is a *G*-deformation of f. This situation is equivalent to considering conformal immersions f and \overline{f} with parallel tangent spaces $f_*(T_pM)$ and $\overline{f}_*(T_pM)$ in \mathbb{R}^N , which we will always assume. The analogous problem for isometric immersions f and \overline{f} was considered by Dajczer and Gromoll [D&G].

In §1 we characterize our situation by means of a tensor field and a differentiable function satisfying certain conditions (see Proposition 1.5). This result will be used in §2, where we treat the above problem for n = 2.

For surfaces, we also consider the oriented Gauss map $F^*: M^2 \to G^*_{2,N}$, where now $f_*(T_pM)$ is seen as an oriented 2-plane in the oriented Grassmannian $G^*_{2,N}$. In regard to the above problem we have two different situations. The first one is when f and \overline{f} have the same oriented Gauss map. In this case, it was shown by Hoffman and Osserman [H&O-2] that either f and \overline{f} are minimal surfaces or \overline{f} coincides with f up to homothety and translation in \mathbb{R}^N . The other situation is when, for any local orientation in M^2 , the oriented Gauss maps of f and \overline{f} differ by the orientation-reversing congruence in $G^*_{2,N}$. In this case we call \overline{f} a G^* -deformation and say that