ERRATA CORRECTION TO DENTABILITY, TREES, AND DUNFORD-PETTIS OPERATORS ON L₁

Maria Girardi and Zhibao Hu

Volume 148 (1991), 59–79

A Banach space has the complete continuity property if all its bounded subsets are midpoint Bocce dentable. We show that a lemma used in the original proposed proof of this result is false; however, we give a proof to show that the result is indeed true.

1. Introduction. Throughout this paper, \mathfrak{X} denotes an arbitrary Banach space, \mathfrak{X}^* the dual space of \mathfrak{X} , $B(\mathfrak{X})$ the closed unit ball of \mathfrak{X} , and $S(\mathfrak{X})$ the unit sphere of \mathfrak{X} . The triple (Ω, Σ, μ) refers to the Lebesgue measure space on [0, 1], Σ^+ to the sets in Σ with positive measure, and L_1 to $L_1(\Omega, \Sigma, \mu)$. The σ -field generated by a partition π of [0, 1] is $\sigma(\pi)$. The conditional expectation of $f \in L_1$ given a σ -field \mathfrak{B} is $E(f|\mathfrak{B})$.

A Banach space \mathfrak{X} has the complete continuity property (CCP) if each bounded linear operator from L_1 into \mathfrak{X} is Dunford-Pettis (i.e. carries weakly convergent sequences onto norm convergent sequences). Since a representable operator is Dunford-Pettis, the CCP is a weakening of the Radon-Nikodým property (RNP). Recall that a Banach space has the RNP if and only if all its bounded subsets are dentable. A subset D of \mathfrak{X} is dentable if for each $\varepsilon > 0$ there is x in D such that $x \notin \overline{co}(\{y \in D: ||x - y|| \ge \varepsilon\})$. Midpoint Bocce dentability is a weakening of dentability. The subset D is midpoint Bocce dentable if for each $\varepsilon > 0$ there is a finite subset F of D such that for each x^* in $B(\mathfrak{X}^*)$ there is x in F satisfying:

if $x = \frac{1}{2}z_1 + \frac{1}{2}z_2$ with $z_i \in D$ then $|x^*(x - z_1)| \equiv |x^*(x - z_2)| < \varepsilon$.

The following theorem is presented in [G1].

THEOREM 1. \mathfrak{X} has the CCP if all bounded subsets of \mathfrak{X} are midpoint Bocce dentable.