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ON SOME EXPLICIT FORMULAS
IN THE THEORY OF WEIL REPRESENTATION

R. RANGA RAO

The object of this paper is to derive some explicit formulae con-
cerning the Weil representation that allow us to define this projective
representation in a unique manner for each choice of symplectic basis.

Let F be a self-dual locally compact field of char φ 2 and X a
symplectic vector space over F. Let V, V* be two transversal La-
grangian subspaces. Then a classical construction due to Shale-Segal-
Weil gives a projective representation of the symplectic group Sp(JSΓ)
in the Schwartz-space of V. The operators ξ(σ) corresponding to
each σ e Sp(X) are determined uniquely only up to a scalar multi-
ple. The starting point of this paper is an explicit integral formula for
these operators ξ(σ), valid for all σ e Sp(X). In fact (see Lemma
3.2) we have for each σ e Sp(ΛΓ)

ξ(σ)φ :x-+ fσ(x, x*)φ(xa + x*y) dμσ

JV*/kevγ

where μσ is a Haar measure on F*/kery, and fσ is the charac-
ter of second degree on X, associated to σ. Here a — [" £] is
the matrix representation of σ in the decomposition X = V + V*.
This formula is known and already present in Weil's paper when
γ = 0 or when γ is an isomorphism. The extension of its valid-
ity for all σ enables us to show that it is possible to define the
projective representation in a unique way for each choice of sym-
plectic basis. Let β\,... , en, e\, . . . , e* be a symplectic basis of
X such that e\, . . . , en {e\,... , e*) is a basis of V (V*). Let
W be the finite subgroup of Sp(X) consisting of all σ such that
{ei, e*}σ c {±ei, ±ef} for each /. Then one has the well-known
Bruhat decomposition Sp(X) = PWP, where P is the stabilizer of
F * . Then it is shown that it is possible to make consistent choices
of the Haar measures μσ so that (1) ζ{p\σp2) = ζ(Pι)ζ{^)ζ(p2) f°Γ

all Pup2e P and (2) ξ(σισ2) = ξ(σι)ζ(σ2) for all σΪ9 σ2 e W.
Moreover all such are determined. Among these there is one choice
σ —• r{σ) called the standard model which in addition satisfies non-
negativity properties similar to those of the Fourier Transform. All
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