BILINEAR OPERATORS ON $L^{\infty}(G)$ OF LOCALLY COMPACT GROUPS

COLIN C. GRAHAM AND ANTHONY T. M. LAU

Let G and H be compact groups. We study in this paper the space $\operatorname{Bil}^\sigma = \operatorname{Bil}^\sigma(L^\infty(G), L^\infty(H))$. That space consists of all bounded bilinear functionals on $L^\infty(G) \times L^\infty(H)$ that are weak* continuous in each variable separately. We prove, among other things, that $\operatorname{Bil}^\sigma$ is isometrically isomorphic to a closed two-sided ideal in $\operatorname{BM}(G,H)$. In the case of abelian G,H, we show that $\operatorname{Bil}^\sigma$ does not have an approximate identity and that $\widehat{G} \times \widehat{H}$ is dense in the maximal ideal space of $\operatorname{Bil}^\sigma$. Related results are given.

0. Introduction. Let V and W be Banach spaces over the complex numbers, and let Bil(V, W) denote the space of bounded bilinear functions $F: V \times W \to C$. Then this is a Banach space under the usual vector space operators and the norm

$$||F|| = \sup\{|F(x, y)| : x \in V, y \in W, ||x|| = ||y|| = 1\}.$$

Furthermore Bil(V, W) may be identified with the dual space of $V \hat{\otimes} W$, the projective tensor product of V and W. When X and Y are locally compact Hausdorff spaces, then elements in $Bil(C_0(X), C_0(Y))$, also denoted by BM(X, Y), are called *bimeasures* (see Graham and Schreiber [7] and Gilbert, Ito and Schreiber [4]).

If V and W are dual Banach spaces, we let $\mathrm{Bil}^{\sigma}(V,W)$ denote all $F \in \mathrm{Bil}(V,W)$ such that $x \mapsto F(x,y)$ and $y \mapsto F(x,y)$ are continuous when V and W have the weak*-topology. Then, as readily checked, $\mathrm{Bil}^{\sigma}(V,W)$ is a norm-closed subspace of $\mathrm{Bil}(V,W)$. It is the purpose of this paper to study $\mathrm{Bil}^{\sigma}(L^{\infty}(G),L^{\infty}(H))$ when G and H are compact groups.

In §1, we shall give some general results on

$$\mathrm{Bil}^{\sigma}(L^{\infty}(X\,,\,\mu)\,,\,L^{\infty}(Y\,,\,\nu))$$

when X, Y are locally compact Hausdorff spaces and μ , ν are positive regular Borel measures on X and Y, respectively. In §2, we show that if G and H are compact groups, then $\mathrm{Bil}^{\sigma} = \mathrm{Bil}^{\sigma}(L^{\infty}(G), L^{\infty}(H))$