SZEGŐ MAPS AND HIGHEST WEIGHT REPRESENTATIONS

M. G. DAVIDSON AND R. J. STANKE

Let G be a connected noncompact simple Lie group with finite center and let K be a maximal compact subgroup of G. Assume the space G/K is Hermitian symmetric. We associate to each irreducible representation τ of K a principal series representation $W(\tau)$ and a G-equivariant Szegö-type integral operator S_{τ} such that S_{τ} maps the K-finite vectors in $W(\tau)$ onto an irreducible highest weight gmodule $L(\tau)$. Of primary concern here are those representations τ which are reduction points. For such τ , we construct certain systems \mathscr{D}_{τ} of G-equivariant differential operators and then utilize \mathscr{D}_{τ} to establish the infinitesimal irreducibility of the image of S_{τ} .

1. **Introduction.** Let G be a connected noncompact simple Lie group with finite center and let K be a maximal compact subgroup of G. Assume the space G/K is Hermitian symmetric. The main purpose of this article is to realize each irreducible highest weight representation of G as the image of a G-equivariant quotient map defined on principal series representations. To make this more precise, recall that each irreducible highest weight representation π_{τ} of G is parametrized by an irreducible unitary representation τ of K. Let $C^{\infty}(G, \tau)$ denote the space of τ -covariant C^{∞} -functions on G. We associate to τ a principal series representation $W(\tau)$ and a Szegö map $S_{\tau}: W(\tau) \to C^{\infty}(G, \tau)$ having the property that the K-finite vectors in $W(\tau)$ are mapped onto an irreducible g-module equivalent to the derived action of π_{τ} . In the case of discrete series and limits thereof, this type of result was proved by Knapp and Wallach [16] in the general setting where G is a semisimple equirank Lie group with finite center. The main result here is that the irreducibility of the image of S_{τ} persists for all highest weight representations. Moreover, for certain τ called reduction points, the irreducibility of Image (S_{τ}) is proved by showing this space is annihilated by a system \mathscr{D}_{τ} of Gequivariant differential operators. The system \mathscr{D}_{τ} somewhat parallels the role of the Schmid operator in the Knapp and Wallach result.

The realization of distinguished representations as irreducible images of quotient maps is a recurring theme in the literature which