CURRENTS, METRICS AND MOISHEZON MANIFOLDS

Shanyu Ji

A compact complex manifold M is Moishezon if and only if there exists an integral closed positive (1, 1)-current ω such that $\omega \ge \varepsilon \sigma$ and ω is smooth outside an analytic subvariety.

1. Introduction. Given a Moishezon manifold M, it is well known (cf. [Mo], [W]) that there is a bimeromorphic morphism $\pi: \widetilde{M} \to M$ such that the manifold M is projective algebraic. Let $\tilde{\omega}$ be Kähler form on \widetilde{M} with $[\tilde{\omega}] \in H^2(\widetilde{M}, \mathbb{Z})$. Then the pushforward current $\omega = \pi_* \tilde{\omega}$ is a *d*-closed current on M such that

(i) $[\omega] \in H^2(M, \mathbb{Z});$

(ii) ω is smooth on M-S, where S is some proper analytic subset in M;

(iii) $\omega \ge \varepsilon \sigma$ in the sense of currents, where $\varepsilon > 0$ is some real number and σ is a fixed positive definite (1, 1)-form (not necessarily *d*-closed) on *M*.

Conversely, we shall prove the following

THEOREM 1.1. Let M be a compact complex manifold of dimension n. Then M is Moishezon if and only if there exists a d-closed (1, 1)-current ω on M such that the conditions (i), (ii) and (iii) above are satisfied.

In fact, the above theorem is a weak version of a general conjecture of Shiffman [J] which asked: whether a compact complex manifold Nis Moishezon if and only if there exists a *d*-closed (1, 1)-current satisfying the conditions (i) and (iii) above. The conjecture is to generalize the well-known Kodaira embedding theorem in terms of currents and it is still unknown. Some partial results have been obtained [J]: if Mis complex torus, Shiffman's conjecture is true; if S is a set of isolated points, Theorem 1.1 follows from an extension theorem of Miyaoka [M]; if S is special in some sense, Theorem 1.1 is also true. All of these results are proved by smoothing of currents technique, and depends on a fact that the top degree Chern number $(c_1([\omega])^n, M) > 0$. However, it is easy to find an example of a current ω satisfying (i), (ii)