L^n SOLUTIONS OF THE STATIONARY AND NONSTATIONARY NAVIER-STOKES EQUATIONS IN R^n

ZHI-MIN CHEN

It is shown that the Navier-Stokes equations in the whole space R^n $(n \ge 3)$ admit a unique small stationary solution which may be formed as a limit of a nonstationary solution as $t \to \infty$ in L^n -norms.

0. Introduction. As is well known, the existence of solutions to the exterior stationary Navier-Stokes equations was studied by Finn [2, 3], and small solutions from Finn [2, 3] may be formed as limits of nonstationary solutions as time $t \to \infty$ in local or global L^2 -norms (cf. Heywood [9, 10], Galdi and Rionero [6], Miyakawa and Sohr [16], Borchers and Miyakawa [1]) and in the norms of other function spaces (cf. Heywood [11], Musuda [14]). However, it is still unknown even in the case of whole spaces whether or not

(0.1)
$$||v(t) - w||_n + t^{1/2} ||Dv(t) - Dw||_n + t^{1/2} ||v(t) - w||_{\infty} \to 0$$

as $t \to \infty$,

provided that w and v are, respectively, the solutions to the stationary Navier-Stokes equations

(0.2)
$$-\Delta w + (w \cdot D)w + d\overline{p} = f, \quad D \cdot w = 0 \quad \text{in } \mathbb{R}^n$$

and the nonstationary Navier-Stokes equations

(0.3)
$$v_t - \Delta v + (v \cdot D)v + D\overline{p} = f$$
, $D \cdot v = 0$ in $\mathbb{R}^n \times (0, \infty)$,
 $v(0) = v_0$ in \mathbb{R}^n .

Here and in what follows, $n \ge 3$ denotes the space dimension, \overline{p} and \overline{p} represent the pressures associated with w and v, respectively, D = the gradient, f = f(x) is a prescribed function, the dot \cdot denotes the scalar product in \mathbb{R}^n , and $\|\cdot\|_r$ denotes the norm of the Lebesgue space $L^r = L^r(\mathbb{R}^n; \mathbb{R}^n)$.

The purpose of the paper is to show that (0.2) and (0.3) admit small regular solutions w and v(t) in L^n , respectively, such that (0.1) is valid. The problem above is, as usual, said to be a stability problem