FIXED POINTS OF BOUNDARY-PRESERVING MAPS OF SURFACES

ROBERT F. BROWN AND BRIAN J. SANDERSON

Let X be a compact 2-manifold with nonempty boundary ∂X . Given a boundary-preserving map $f: (X, \partial X) \to (X, \partial X)$, let $MF_{\partial}[f]$ denote the minimum number of fixed points of all boundarypreserving maps homotopic to f as maps of pairs and let $N_{\partial}(f)$ be the relative Nielsen number of f in the sense of Schirmer [S]. Call X boundary-Wecken, bW, if $MF_{\partial}[f] = N_{\partial}(f)$ for all boundarypreserving maps of X, almost bW if $MF_{\partial}[f] - N_{\partial}(f)$ is bounded for all such f, and totally non-bW otherwise. We show that if the euler characteristic of X is non-negative, then X is bW. On the other hand, except for a relatively small number of cases, we demonstrate that the 2-manifolds of negative euler characteristic are totally non-bW. For one of the remaining cases, the pants surface P, we use techniques of transversality theory to examine the fixed point behavior of boundary-preserving maps of P, and show that P is almost bW.

1. Introduction. Throughout this paper, we will be working in the setting of compact manifolds. Given a map $f: X \to X$ of a compact manifold X, we denote the Nielsen number of f by N(f) and let MF[f] be the minimum number of fixed points of all maps homotopic to f. The manifold X is said to be Wecken if MF[f] = N(f) for all maps $f: X \to X$. Wecken [W] proved that all n-manifolds are Wecken for $n \ge 3$ and Jiang [J] proved that a 2-manifold is Wecken if and only if its euler characteristic is non-negative. The interval is obviously Wecken and it is a classical result that the circle is Wecken.

Now suppose that the manifold X has nonempty boundary ∂X and that f is boundary-preserving, that is, f maps ∂X to itself so f is a map of pairs $f: (X, \partial X) \to (X, \partial X)$. We denote the relative Nielsen number by $N_{\partial}(f)$ and write $MF_{\partial}[f]$ for the minimum number of fixed points of all maps homotopic to f as maps of pairs. We say that a manifold X with nonempty boundary is *boundary-Wecken*, abbreviated bW, if $MF_{\partial}[f] = N_{\partial}(f)$ for all maps $f: (X, \partial X) \to (X, \partial X)$. It is obvious that the interval is bW and Schirmer [S] proved that all *n*-manifolds are bW for $n \ge 4$. The purpose of this paper is to investigate the bW property for boundarypreserving maps of 2-manifolds. We begin, however, with a remark