ON THE EXTENSION OF LIPSCHITZ FUNCTIONS FROM BOUNDARIES OF SUBVARIETIES TO STRONGLY PSEUDOCONVEX DOMAINS

Kenzō Adachi and Hiroshi Kajimoto

In this paper, we study the principal value integral on boundaries of subvarieties in strongly pseudoconvex domains and using it, we give a condition for the extendability of Lipschitz functions.

Introduction. Let D be a strongly pseudoconvex domain in C^n with C^{∞} boundary. Henkin [6] and Ramírez [12] obtained independently the support function $g(\zeta, z)$ for D which depends holomorphically on z, and then, using this support function, they obtained the integral formula for holomorphic functions in \overline{D} . On the other hand, Stout [14], when p = 1, and then, Hatziafratis [5], when p is arbitrary, obtained the integral formula for a certain subvariety V of codimension p in D. By using the support function $g(\zeta, z)$ and the integral formula for V, we can obtain the kernel $\Omega(\zeta, z)$ for $(\zeta, z) \in \partial V \times \overline{D}$. In this paper, we shall define the principal value integral P.V. $\int_{\partial V} f(\zeta) \Omega(\zeta, z)$ for a Lipschitz function f on ∂V and $z \in \partial V$. The definition of the principal value integral is the same as that of Alt [2] when V = D (cf. Dolbeault [4]). By using the principal value integral we can give the condition for a Lipschitz function on ∂V to be the boundary value of a function that is holomorphic in D and continuous on \overline{D} . Finally we end the introduction by giving an example which shows that the Lipschitz continuity is necessary in order to define the principal value integral.

EXAMPLE. Define $\varphi \in C^{\infty}(0, \infty)$ such that

$$\varphi(\theta) = \begin{cases} 1 & \text{if } 0 < \theta \le \frac{\pi}{4} \\ 0 & \text{if } \theta \ge \frac{\pi}{2} \end{cases}.$$

Extend φ to an odd function on $R|\{0\}$. Let D be the unit disc in \mathbb{C} and f be a function on ∂D such that

$$f(e^{i\theta}) = \begin{cases} \frac{\varphi(\theta)}{\log|\theta|} & \text{if } 0 < |\theta| \le \pi, \\ 0 & \text{if } \theta = 0. \end{cases}$$