LACUNARY STATISTICAL CONVERGENCE

J. A. FRIDY AND C. ORHAN

The sequence x is statistically convergent to L provided that for each $\varepsilon > 0$,

 $\lim n^{-1} \{ \text{the number of } k \leq n \colon |x_k - L| \geq \varepsilon \} = 0.$

In this paper we study a related concept of convergence in which the set $\{k: k \le n\}$ is replaced by $\{k: k_{r-1} < k \le k_r\}$, for some lacunary sequence $\{k_r\}$. The resulting summability method is compared to statistical convergence and other summability methods, and questions of uniqueness of the limit value are considered.

1. Introduction. A complex number sequence x is said to be statistically convergent to the number L if for every $\varepsilon > 0$,

(1)
$$\lim_{n} \frac{1}{n} |\{k \le n : |x_k - LK| \ge \varepsilon\}| = 0,$$

where the vertical bars indicate the number of elements in the enclosed set. In this case we write $S - \lim x = L$ or $x_k \to L(S)$. We shall also use S to denote the set of all statistically convergent sequences. The idea of statistical convergence was introduced by Fast [4] and studied by several authors [2], [3], [5], [6], [11]. There is a natural relationship [2] between statistical convergence and strong Cesàro summability:

$$|\sigma_1| := \left\{ x: \text{ for some } L, \lim_n \left(\frac{1}{n} \sum_{k=1}^n |x_k - L| \right) = 0 \right\}.$$

By a lacunary sequence we mean an increasing integer sequence $\theta = \{k_r\}$ such that $k_0 = 0$ and $h_r := k_r - k_{r-1} \to \infty$ as $r \to \infty$. Throughout this paper the intervals determined by θ will be denoted by $I_r := (k_{r-1}, k_r]$, and the ratio k_r/k_{r-1} will be abbreviated by q_r . There is a strong connection [7] between $|\sigma_1|$ and the sequence space N_{θ} , which is defined by

$$N_{\theta} := \left\{ x \colon \text{for some } L, \lim_{r} \left(\frac{1}{h_{r}} \sum_{k \in I_{r}} |x_{k} - L| \right) = 0 \right\}.$$

The purpose of this paper is to introduce and study a concept of convergence that is related to statistical convergence (1) in the same way that N_{θ} is related to $|\sigma_1|$.