BOURGAIN ALGEBRAS ON THE UNIT DISK

JOSEPH A. CIMA, KAREL STROETHOFF AND KEITH YALE

The Bourgain algebra of $H^{\infty}(\mathbb{D})$ relative to $L^{\infty}(\mathbb{D})$ is shown to be $H^{\infty}(\mathbb{D}) + C(\overline{\mathbb{D}}) + V$, where V is an ideal of functions in $L^{\infty}(\mathbb{D})$ which vanish in an appropriate sense near the boundary of \mathbb{D} .

1. Introduction. Let \mathscr{X} be a commutative Banach algebra with an identity and let \mathscr{A} be a linear subspace of \mathscr{X} . J. Cima and R. Timoney [6] introduced the notion of the Bourgain algebra based on ideas of J. Bourgain [3]: the *Bourgain algebra* \mathscr{A}_b consists of those fin \mathscr{X} such that

(1) if $f_n \to 0$ weakly in \mathscr{A} , then $dist(f_n f, \mathscr{A}) \to 0$.

The distance dist $(f_n f, \mathscr{A})$ between $f_n f$ and \mathscr{A} is the quotient norm of the coset $f_n f + \mathscr{A}$ in the space \mathscr{X}/\mathscr{A} . The proof in [6] shows that \mathscr{A}_b is a closed subalgebra of \mathscr{X} and if \mathscr{A} is an algebra then $\mathscr{A} \subseteq \mathscr{A}_b$. It is important to note that \mathscr{A}_b depends upon the space \mathscr{X} even though this is not reflected in the notation. For a brief survey of Bourgain algebras see K. Yale [16].

Let $H^{\infty}(\mathbb{D})$ be the algebra of bounded analytic functions on the open unit disk \mathbb{D} . There are at least three different natural spaces \mathscr{X} containing $H^{\infty}(\mathbb{D})$. First we can let $\mathbb{T} = \partial \mathbb{D} = \{z \in \mathbb{C} : |z| = 1\}$ be the unit circle and consider the algebra $H^{\infty}(\mathbb{T})$ of boundary values of $H^{\infty}(\mathbb{D})$ functions as a subalgebra of $\mathscr{X} = L^{\infty}(\mathbb{T})$. In this context, J. Cima, S. Janson and K. Yale [5] showed that $H^{\infty}(\mathbb{T})_{h} =$ $H^{\infty}(\mathbb{T}) + C(\mathbb{T})$. Another setting is to use the Gelfand map and regard $H^{\infty}(\mathbb{D})$ as a subalgebra of $\mathscr{X} = C(\mathscr{M})$, where \mathscr{M} denotes the maximal ideal space of $H^{\infty}(\mathbb{D})$. In this context $H^{\infty}(\mathbb{D})_h$ has been determined by P. Ghatage, S. Sun and D. Zheng [10]. Yet another natural setting is to regard $H^{\infty}(\mathbb{D})$ as a subalgebra of $\mathscr{X} = L^{\infty}(\mathbb{D})$, where $L^{\infty}(\mathbb{D})$ is the usual space of equivalence classes of essentially bounded measurable functions on \mathbb{D} with respect to area measure. The purpose of this paper is to determine $H^{\infty}(\mathbb{D})_{h}$ in the latter context. There is no Chang-Marshall theory for $L^{\infty}(\mathbb{D})$ in contrast to the well-known description of subalgebras between $H^{\infty}(\mathbb{T})$ and $L^{\infty}(\mathbb{T})$ which was used in [5] to determine $H^{\infty}(\mathbb{T})_h$. For a survey of the