POSITIVE 2-SPHERES IN 4-MANIFOLDS OF SIGNATURE (1, n)

KAZUNORI KIKUCHI

We sharpen Donaldson's theorem on the standardness of definite intersection forms of smooth 4-manifolds in the same sense as Kervaire and Milnor sharpened Rohlin's signature theorem. We then apply the result thus obtained to show that the homology classes of rational surfaces with $b_2^- \leq 9$ which can be represented by smoothly embedded 2-spheres S with $S \cdot S > 0$ are up to diffeomorphism represented by smooth rational curves. Furthermore, we not only extend part of the application to the case where $b_2^- > 9$, but also give an algorithm to see whether or not a given homology class of rational surfaces with $b_2^- \leq 9$ can be represented by a smoothly embedded 2-sphere.

1. Introduction. Let M be a closed oriented smooth 4-manifold. One of the most important facts in 4-dimensional differential topology is the following:

THEOREM R (Rohlin's signature theorem [13]). If the second Stiefel-Whitney class $w_2(M)$ vanishes, then the signature $\sigma(M)$ is congruent to 0 modulo 16.

Performing the topological blowing up/down operations and applying Theorem R, Kervaire and Milnor [6] extended Theorem R to deduce the following:

THEOREM KM. If an integral homology class ξ of M, dual to $w_2(M)$, is represented by a smoothly embedded 2-sphere in M, then the self-intersection number $\xi \cdot \xi$ must be congruent to $\sigma(M)$ modulo 16.

Note that, although used in their proof of Theorem KM, Theorem R can be regarded as a special case of Theorem KM with $\xi = 0$.

The primary purpose of this paper is to sharpen the following in the same sense as Kervaire and Milnor sharpened Theorem R:

THEOREM D (Donaldson [2]). If the intersection form of M is negative-definite $(b_2^+ = 0)$, then it is equivalent over the integers to $\bigoplus b_2^-(-1)$.