THE SOFT TORUS AND APPLICATIONS TO ALMOST COMMUTING MATRICES

RUY EXEL

The "Soft Torus" A_{ε} is defined to be the universal C^* -algebra generated by a pair of unitaries for which the commutator has norm less than or equal to ε . We show that the K-theory of A_{ε} is naturally isomorphic to the K-theory of the algebra of continuous functions on the two-torus although these algebras are not homotopically equivalent. This result is applied to give a new proof of the equality of certain invariants associated to almost commuting unitary matrices.

1. Introduction. The C^* -algebra $C(\mathbf{T}^2)$ of all continuous complex valued functions on the two-torus is well known to be the universal C^* -algebra generated by two commuting unitary elements.

Softening the commuting condition we define for all ε in the real interval [0, 2] the "Soft Torus" A_{ε} to be the universal C*-algebra generated by a pair of elements u_{ε} and v_{ε} , subject to the relations $u_{\varepsilon}^* u_{\varepsilon} = u_{\varepsilon} u_{\varepsilon}^* = 1 = v_{\varepsilon}^* v_{\varepsilon} = v_{\varepsilon} v_{\varepsilon}^*$ and $||u_{\varepsilon} v_{\varepsilon} - v_{\varepsilon} u_{\varepsilon}|| \le \varepsilon$.

Clearly if ε is taken to be zero then A_{ε} is nothing but an isomorphic model of the "hard torus" $C(\mathbf{T}^2)$. On the opposite extreme if $\varepsilon = 2$ then A_{ε} is the full C*-algebra of the free group on two generators. The reader is referred to [1] for more information on the theory of C*-algebras defined by generators and relations.

One of the main goals of this work is the computation of the Ktheory groups of A_{ε} . It turns out that A_{ε} has the same K-groups as $C(\mathbf{T}^2)$ when $\varepsilon < 2$ (if $\varepsilon = 2$ it is well known that $K_0(A_{\varepsilon}) = \mathbf{Z}$ and $K_1(A_{\varepsilon}) = \mathbf{Z} \oplus \mathbf{Z}$ [4]). However we shall show that A_{ε} is not in the homotopy class of $C(\mathbf{T}^2)$.

We say that two elements u and v in a C^* -algebra are ε -almost commuting if the commutation error ||uv - vu|| is less than or equal to ε .

Several authors [3], [5], [8], [9], [10], [13], [17], [18] have investigated the properties of almost commuting complex matrices in what has been called, after Brown, Douglas and Fillmore's work on essentially normal operators [2], "quantitative BDF theory".

Recent works by Loring, Choi and myself [13], [3], [8] have introduced invariants which can detect obstructions to the existence of