A NOTE ON MORTON'S CONJECTURE CONCERNING THE LOWEST DEGREE OF A 2-VARIABLE KNOT POLYNOMIAL

Peter R. Cromwell

Abstract

This note is concerned with the behaviour of the 'HOMFLY' polynomial of oriented links, $P_{L}(v, z)$. In particular, we show that the gap between the two lowest powers of v can be made arbitrarily large. This casts doubt on whether Morton's conjecture on the least v-degree can be established in general by the kind of combinatorial approach that has been successfully applied to some special cases.

Introduction. The two-variable knot polynomial $P_{L}(v, z)$ of a link L, announced in [FYHLMO], [PT], can be written in the form

$$
P_{L}(v, z)=\sum_{i=e}^{E} a_{i}(z) v^{i}
$$

where $a_{i}(z)$ is a polynomial in z for each $i, a_{e}(z) \neq 0$, and $a_{E}(z) \neq$ 0 . Let $f\left(P_{L}\right)$ denote the least degree in v in the polynomial P_{L}. Say that $f\left(P_{L}\right)$ is the first degree of P_{L}. With the above formulation $f\left(P_{L}\right)=e$. Let $s\left(P_{L}\right)$ be the least $i>e$ such that $a_{i}(z) \neq 0$. Say that $s\left(P_{L}\right)$ is the second degree of P_{L}.

In [Mo3] H . Morton conjectured that

$$
f\left(P_{L}\right) \leq 1-\chi(L)
$$

for all links L where $\chi(L)$ is the maximum Euler characteristic over all orientable surfaces spanning L. In [$\mathbf{C r}$] I showed that the conjecture is satisfied by the homogeneous links (a class containing the positive and alternating links as special cases). A computer search for counterexamples in other classes of links showed up an interesting phenomenon: sometimes polynomials were produced where $s\left(P_{L}\right)-f\left(P_{L}\right)$ was quite large and $a_{e}(z)=1$. In these cases it was only the term v^{e}, isolated from the other non-zero terms in the polynomial, which saved the conjecture from being violated. This prompted the question of whether $s\left(P_{L}\right)-f\left(P_{L}\right)$ could be arbitrarily large. Here I provide examples to show that it can.

