ERRATA TO:
 THE SET OF PRIMES DIVIDING THE LUCAS NUMBERS HAS DENSITY $2 / 3$

J. C. Lagarias
Volume 118 (1985), 449-461

Theorem C of my paper [2] states an incorrect density for the set of primes that divide the terms W_{n} of a recurrence of Laxton [3], due to a slip in the proof. A corrected statement and proof are given.

The corrected version of Theorem C of [2] is:
Theorem C. Let W_{n} denote the recurrence defined by $W_{0}=1$, $W_{1}=2$ and $W_{n}=5 W_{n-1}-7 W_{n-2}$. Then the set

$$
S_{W}=\left\{p: p \text { is prime and } p \text { divides } W_{n} \text { for some } n \geq 0\right\}
$$

has density $3 / 4$.
The proof below proceeds along the general lines of $\S 4$ of [2].
Proof. One has

$$
W_{n}=\left(\frac{3+\sqrt{-3}}{6}\right)\left(\frac{5+\sqrt{-3}}{2}\right)^{n}+\left(\frac{3-\sqrt{-3}}{6}\right)\left(\frac{5-\sqrt{-3}}{2}\right)^{n} .
$$

If

$$
\alpha=\frac{3+\sqrt{-3}}{6} \text { and } \phi=\frac{5+\sqrt{-3}}{5-\sqrt{-3}}=\frac{11+5 \sqrt{-3}}{14}
$$

then

$$
W_{n} \equiv 0(\bmod p) \Leftrightarrow \phi^{n} \equiv-\frac{\bar{\alpha}}{\alpha}(\bmod (p)) \quad \text { in } \mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right],
$$

where $-\frac{\bar{\alpha}}{\alpha}=\frac{-1+\sqrt{-3}}{2}$ is a cube root of unity. Consequently (1.1) p divides W_{n} for some $n \geq 0 \Leftrightarrow \operatorname{ord}_{(p)} \phi \equiv 0(\bmod 3)$.

The argument now depends on whether the prime ideal (p) splits or remains inert in the ring of integers $\mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right]$ of $\mathbb{Q}(\sqrt{-3})$.

Case 1. $p \equiv 1(\bmod 3)$, so that $p=\pi \bar{\pi}$ in $\mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right]$. Since $\operatorname{ord}_{(\pi)} \phi=\operatorname{ord}_{(\bar{\pi})} \phi$, one has

$$
\operatorname{ord}_{(p)} \phi \equiv 0(\bmod 3) \Leftrightarrow \operatorname{ord}_{(\pi)} \phi \equiv 0(\bmod 3) .
$$

