A CONVEXITY THEOREM FOR SEMISIMPLE SYMMETRIC SPACES

KARL-HERMANN NEEB

In this paper we prove a convexity theorem for semisimple symmetric spaces which generalizes Kostant's convexity theorem for Riemannian symmetric spaces. Let τ be an involution on the semisimple connected Lie group G and $H = G_0^{\tau}$ the 1-component of the group of fixed points. We choose a Cartan involution θ of G which commutes with τ and write $K = G^{\theta}$ for the group of fixed points. Then there exists an abelian subgroup A of G, a subgroup M of K commuting with A, and a nilpotent subgroup N such that HMAN is an open subset of G and there exists an analytic mapping $L: HMAN \to \mathfrak{a} = L(A)$ with $L(hman) = \log a$. The set of all elements in A for which $aH \subseteq HMAN$ is a closed convex cone. Our main result is the description of the projections $L(aH) \subseteq \mathfrak{a}$ for these elements as the sum of the convex hull of the Weyl group orbit of $\log a$ and a certain convex cone in \mathfrak{a} .

0. Introduction. If G is a connected semisimple Lie group and G = KA'N an Iwasawa decomposition, then the convexity theorem of Kostant describes the image of the sets aK under the projection $G = KA'N \rightarrow a' = L(A')$, $k \exp Xn \mapsto X$ as the convex hull of the Weyl group orbit through log a. Recently van den Ban proved a generalization of this theorem to the following situation. Let τ be an involution on the semisimple Lie group G with finite center, G = KA'N a compatible Iwasawa decomposition, i.e., K is τ -invariant, and $a' = a_{\mathfrak{h}} + a_{\mathfrak{q}}$ the corresponding decomposition of a' = L(A') into 1 and -1 eigenspaces for τ . Suppose that $H \subseteq G^{\tau}$ is an essentially connected subgroup (see §I for the definition). Then he describes the image of the sets aH, $a \in \exp a_{\mathfrak{q}}$ under the projection $F: G \to a_{\mathfrak{q}}$ defined by $g \in K \exp(a_{\mathfrak{h}}) \exp F(g)N$. This set is the sum of the convex hull of the orbit of log a under a certain Weyl group and a convex cone in $a_{\mathfrak{q}}$.

We generalize Kostant's theorem into another direction. We consider the projection $L: HMAN \to a$ defined by $g \in HM \exp L(g)N$, where $H \subseteq G^{\tau}$ is essentially connected and M, A, and N are defined in §I. This makes sense because the A-component in a product hman is unique and HMAN is open in G. So the main new difficulties are the non-compactness of H and the fact that the projection L