A CONVEXITY THEOREM FOR SEMISIMPLE SYMMETRIC SPACES

Karl-Hermann Neeb

Abstract

In this paper we prove a convexity theorem for semisimple symmetric spaces which generalizes Kostant's convexity theorem for Riemannian symmetric spaces. Let τ be an involution on the semisimple connected Lie group G and $H=G_{0}^{\tau}$ the 1 -component of the group of fixed points. We choose a Cartan involution θ of G which commutes with τ and write $K=G^{\theta}$ for the group of fixed points. Then there exists an abelian subgroup A of G, a subgroup M of K commuting with A, and a nilpotent subgroup N such that $H M A N$ is an open subset of G and there exists an analytic mapping $L: H M A N \rightarrow \mathfrak{a}=\mathbf{L}(A)$ with $L($ hman $)=\log a$. The set of all elements in A for which $a H \subseteq H M A N$ is a closed convex cone. Our main result is the description of the projections $L(a H) \subseteq \mathfrak{a}$ for these elements as the sum of the convex hull of the Weyl group orbit of $\log a$ and a certain convex cone in \mathfrak{a}.

0. Introduction. If G is a connected semisimple Lie group and $G=K A^{\prime} N$ an Iwasawa decomposition, then the convexity theorem of Kostant describes the image of the sets $a K$ under the projection $G=K A^{\prime} N \rightarrow \mathfrak{a}^{\prime}=\mathbf{L}\left(A^{\prime}\right), k \exp X n \mapsto X$ as the convex hull of the Weyl group orbit through $\log a$. Recently van den Ban proved a generalization of this theorem to the following situation. Let τ be an involution on the semisimple Lie group G with finite center, $G=$ $K A^{\prime} N$ a compatible Iwasawa decomposition, i.e., K is τ-invariant, and $\mathfrak{a}^{\prime}=\mathfrak{a}_{\mathfrak{h}}+\mathfrak{a}_{\mathfrak{q}}$ the corresponding decomposition of $\mathfrak{a}^{\prime}=\mathbf{L}\left(A^{\prime}\right)$ into 1 and -1 eigenspaces for τ. Suppose that $H \subseteq G^{\tau}$ is an essentially connected subgroup (see $\S I$ for the definition). Then he describes the image of the sets $a H, a \in \exp \mathfrak{a}_{\mathfrak{q}}$ under the projection $F: G \rightarrow \mathfrak{a}_{\mathfrak{q}}$ defined by $g \in K \exp \left(\mathfrak{a}_{\mathfrak{h}}\right) \exp F(g) N$. This set is the sum of the convex hull of the orbit of $\log a$ under a certain Weyl group and a convex cone in \mathfrak{a}_{q}.

We generalize Kostant's theorem into another direction. We consider the projection $L: H M A N \rightarrow \mathfrak{a}$ defined by $g \in H M \exp L(g) N$, where $H \subseteq G^{\tau}$ is essentially connected and M, A, and N are defined in \S I. This makes sense because the A-component in a product hman is unique and HMAN is open in G. So the main new difficulties are the non-compactness of H and the fact that the projection L

