NONRIGID CONSTRUCTIONS IN GALOIS THEORY

PIERRE DEBES AND MICHAEL D. FRIED

The context for this paper is the *Inverse Galois Problem*. First we give an if and only if condition that a finite group is the group of a Galois regular extension of $\mathbb{R}(X)$ with only real branch points. It is that the group is generated by elements of order 2 (Theorem 1.1 (a)). We use previous work on the action of the complex conjugation on covers of \mathbb{P}^1 . We also show each finite group is the Galois group of a Galois regular extension of $\mathbb{Q}^{tr}(X)$. Here \mathbb{Q}^{tr} is the field of all totally real algebraic numbers (Theorem 5.7). Sections 1, 2, and 3 discuss consequences, generalizations, and related questions.

The second part of the paper, §4 and §5, concerns descent of fields of definition from \mathbb{R} to \mathbb{Q} . Use of Hurwitz families reduces the problem to finding \mathbb{Q} -rational point on a special algebraic variety. Our first application considers realizing the symmetric group S_m as the group of a Galois extension of $\mathbb{Q}(X)$, regular over \mathbb{Q} , satisfying two further conditions. These are that the extension has four branch points, and it also has some totally real residue class field specializations. Such extensions exist for m = 4, 5, 6, 7, 10 (Theorem 4.11).

Suppose that m is a prime larger than 7. Theorem 5.1 shows that the dihedral group D_m of order 2m is not the group of a Galois regular extension of $\mathbb{Q}(X)$ with fewer than 6 branch points. The proof interprets realization of certain dihedral group covers as corresponding to rational points on *modular curves*. We then apply Mazur's Theorem. New results of Kamienny and Mazur suggest that no bound on the number of branch points will allow realization of all D_m s.

0.1. Description of Theorem 1.1. Throughout, \mathbb{C} denotes the complex number field, X an indeterminate, and $\overline{\mathbb{C}(X)}$ a fixed algebraic closure of $\mathbb{C}(X)$. Let k be a subfield of \mathbb{C} . We say a finite extension Y/k(X) with $\overline{\mathbb{C}(X)} \supset Y$ is regular over k if $\overline{k} \cap Y = k$. Equivalently $[Y: k(X)] = [Y\mathbb{C}: \mathbb{C}(X)]$. Denote this degree by n. Regard the degree n field extension $Y\mathbb{C}/\mathbb{C}(X)$ as the function field extension of a degree n cover $\varphi: Y_{\mathbb{C}} \to \mathbb{P}^1$. Here \mathbb{P}^1 is the complex projective line and $Y_{\mathbb{C}}$ is an irreducible non-singular curve.

The map φ is ramified over a finite number of points x_1, \ldots, x_r . We call these the *branch points* of the cover (or of the extension Y/k(X)). Our first result (Theorem 1.1(a)) shows exactly when a finite group G is the group of a Galois regular extension of $\mathbb{R}(X)$ with only real branch points.