ON AMBIENTAL BORDISM

CARLOS BIASI

Let M^m be a closed and oriented submanifold of a closed or oriented manifold N^n , such that $[M, i] = 0 \in \Omega_m(N)$, where $i: M \to N$ is the inclusion and $\Omega_m(N)$ is the *m*th oriented bordism group of N. If n = m + 2 or $m \le 3$ or $m \le 4$ and $n \ne 7$ then M bounds in N.

Introduction. Let us consider M^m a closed submanifold of N^n . In this paper, we study the possibility that there exists submanifold $W^{m+1} \subset N^n$ such that $\partial W = M$. If $M = S^m$ and $N = S^{m+2}$, such that a submanifold W is called a Seifert surface knot S^m . In [5], Sato showed that every connected closed and oriented submanifold M^m of S^{m+2} is a boundary of an oriented surface of S^{m+2} .

In [4], Hirsch studies the following problem: If a compact connected and oriented manifold M^m bounds, does there exist embedding from M^m into \mathbb{R}^n which is a boundary in \mathbb{R}^n ?

The answer is yes, if $n \ge 2m$.

The difference between the two problems is that, in our case, the embedding from M into N is fixed.

There is an obvious necessary condition for the existence of W, when M and N are oriented manifolds.

Let $\Omega_m(N)$ be the *m*th oriented bordism group of N [2]. If $i: M \to N$ is the inclusion map, we can define an element [M, i] in $\Omega_m(N)$ and see that [M, i] = 0 if M bounds in N.

Generally, the converse in not true, but sometimes the vanishing of [M, i] guarantees the existence of W, for example if the codimension n - m is large.

We prove the following theorem.

THEOREM 5.2. Let us suppose that $M^m \subset N^n$, n > m + 1, is such that [M, i] = 0 in $\Omega_m(N)$. Then M bounds in N if one of the following conditions occurs:

- (a) n = m + 2,
- (b) $m \le 3$,
- (c) $m \leq 4$ and $n \neq 7$.