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WEIGHTED MAXIMAL FUNCTIONS AND DERIVATIVES
OF INVARIANT POISSON INTEGRALS OF POTENTIALS

PATRICK AHERN AND WILLIAM COHN

In this paper we prove LP estimates for weighted maximal func-
tions of invariant Poisson integrals of potentials. From this it follows
that the exceptional sets of the Poisson integrals of potentials are sets
of zero Hausdorff capacity.

Let S denote the boundary of Bn , the unit ball in Cn , and let dσ
be the unusual rotation invariant measure defined on S. If £ is a
function belonging to the usual Lebesgue space Lx(dσ) of functions
defined on the sphere then by P[g] we will mean the invariant Poisson
integral of g defined by the equation

where z e Bn.
In this paper we will continue the work of Ahern and Cascante [ACa]

and study invariant Poisson integrals of potentials of distributions in
the atomic Hardy spaces H%t where 0 < p < 1. Precisely, if v
denotes a distribution in the space H%t defined by Garnett and Latter
and if 0 < β < n and ζ G S define the (non-isotopic) potential of υ

Let f(z) = P[IβV](z) and denote by f* the admissible maximal
function of / defined on the sphere S associated with the admissible
approach region of aperture a. Thus, for each fixed a > 1

= sup |/(^)|,
wera(ζ)

where Γa(ζ) is the admissible approach region

Γ α ( C ) = {weBn:\l- (w,ζ)\ < f (1 - M 2 ) } .

Suppose that μ is a positive measure on S satisfying the condition

(1) to


