MÖBIUS-INVARIANT HILBERT SPACES IN POLYDISCS

H. TURGAY KAPTANOĞLU

We define the Dirichlet space \mathscr{D} on the unit polydisc \mathbb{U}^n of \mathbb{C}^n . \mathscr{D} is a semi-Hilbert space of of holomorphic functions, contains the holomorphic polynomials densely, is invariant under compositions with the biholomorphic automorphisms of \mathbb{U}^n , and its semi-norm is preserved under such compositions. We show that \mathscr{D} is unique with these properties. We also prove \mathscr{D} is unique if we assume that the semi-norm of a function in \mathscr{D} composed with an automorphism is only equivalent in the metric sense to the semi-norm of the original function. Members of a subclass of \mathscr{D} given by a norm can be written as potentials of \mathscr{L}^2 -functions on the *n*-torus \mathbb{T}^n . We prove that the functions in this subclass satisfy strong-type inequalities and have tangential limits almost everywhere on $\partial \mathbb{U}^n$. We also make capacitory estimates on the size of the exceptional sets on $\partial \mathbb{U}^n$.

1. Introduction. Möbius-invariant spaces. Let \mathbb{U} be the open unit disc in \mathbb{C} and \mathbb{T} be the unit circle bounding it. The open unit polydisc \mathbb{U}^n and the torus \mathbb{T}^n in \mathbb{C}^n are the cartesian products of *n* unit discs and *n* unit circles, respectively. \mathbb{T}^n is the distinguished boundary of \mathbb{U}^n and forms only a small part of the topological boundary $\partial \mathbb{U}^n$ of \mathbb{U}^n . We denote by \mathscr{M} the group of all biholomorphic automorphisms of \mathbb{U}^n (the Möbius group). The subgroup of linear automorphisms in \mathscr{M} is denoted by \mathscr{U} . The space of holomorphic functions with domain \mathbb{U}^n will be called $\mathscr{H}(\mathbb{U}^n)$ and will carry the topology of uniform convergence on compact subsets of \mathbb{U}^n .

A semi-inner product on a complex vector space \mathscr{H} is a sesquilinear functional on $\mathscr{H} \times \mathscr{H}$ with all the properties of an inner product except that it is possible to have $\langle\!\langle a, a \rangle\!\rangle = 0$ when $a \neq 0$. $||a|| = \sqrt{\langle\!\langle a, a \rangle\!\rangle}$ is the associated *semi-norm*. We assume $\langle\!\langle \cdot, \cdot \rangle\!\rangle$ is not identically zero.

DEFINITION 1.1. \mathcal{H} is called a *Hilbert space* of holomorphic functions on \mathbb{U}^n if

- (i) \mathscr{H} is a linear subspace of $\mathscr{H}(\mathbb{U}^n)$,
- (ii) the semi-inner product $\langle\!\langle \cdot, \cdot \rangle\!\rangle$ of $\mathscr H$ is complete,
- (iii) \mathcal{H} contains all (holomorphic) polynomials,
- (iv) polynomials are dense in \mathcal{H} in the topology of the semi-norm $\|\cdot\|$ of \mathcal{H} .