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TENT SPACES OVER GENERAL APPROACH REGIONS
AND POINTWISE ESTIMATES

MARΪA J. CARRO AND JAVIER SORIA

We consider the study of the tent spaces over general (possibly tan-
gential) approach regions and their atomic decomposition. As a con-
sequence, we obtain some pointwise estimates for a class of operators,
using the duality properties of a certain type of Carleson measures.
In particular, we can get the boundedness of a family of bilinear oper-
ators defined on the product of Lq and some space of measures, into
a Lipschitz space; we give yet another proof of the pointwise bounded-
ness for the Fourier transform of distributions in Hp and we improve
and generalize the Fejer-Riesz inequality for harmonic extensions of
Hp functions.

Several authors have studied the boundedness of maximal oper-
ators defined by means of general subsets. For example, in [8], a
Hardy-Littlewood type operator is associated with a collection of sub-
sets Ωx c R+4*1, x € Rn . The natural way to define the balls for
these sets is to take the subset of Ωx at level t, that is, the set of
points z G Rn so that (z, t) e Ωx. Our idea is to also replace the
cone Γ(JC) = {(y, t) e R++1 : \x - y\ < t} in the definition of the tent
spaces (see [2]), by a more general family of subsets of R" + 1 . As an
application, we look at a family of integral operators (e.g. the Fourier
transform) as the action of continuous linear forms, and using the
duality established between certain spaces, we obtain pointwise esti-
mates that will allow us to give another proof of well-known bounds
for the Fourier transform of Hp functions (see [4], [12]). We can
also improve the Fejer-Riesz inequality for harmonic extensions (see
[5]) and we find a generalization considering Hardy spaces defined in
terms of arbitrary kernels (see [14]). Our main tool will be given by
the properties that the tent spaces satisfy (see [2], [1], [10]), and in
particular their relation with a class of Carleson measures, for which
we find a suitable atomic decomposition. We begin by giving some
basic definitions.

DEFINITION 1. Let Ω = {ΩX}X€R» be a collection of measurable
subsets, where Ωx c R+4"1. For a measurable function / in R++1 we
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