CORRECTION TO "TRACE RINGS FOR VERBALLY PRIME ALGEBRAS"

Allan Berele Volume **150** (1991), 23–29

In [1] and [2] we incorrectly state a theorem of Razmyslov from [3]. We quoted Razmyslov as saying:

For all k and l, $M_{k,l}$ satisfies a trace identity of the form

(*)
$$p(x_1,\ldots,x_n,a) = c(x_1,\ldots,x_n)\operatorname{tr}(a)$$

where $p(x_1, \ldots, x_n, a)$ and $c(x_1, \ldots, x_n)$ are central polynomials.

This statement is true if $k \neq l$ and false if k = l. We will indicate why this is true and what effect it has on the results of [1] and [2]. It turns out that [1] needs only a very minor comment, but that [2] requires a modification to the main theorem and a longer proof in the case of k = l.

First, here is a correct version of Razmyslov's theorem:

For all k and l, $M_{k,l}$ satisfies a trace identity of the form

(**)
$$p(x_1, ..., x_n, a) = tr(c'(x_1, ..., x_n))tr(a)$$

where $p(x_1, \ldots, x_n, a)$ is a central polynomial and $c'(x_1, \ldots, x_n)$ does not involve any traces.

If $k \neq l$, then the trace of the identity matrix equals k - l which is not zero. So, if we set a = I in (**) we get

$$\operatorname{tr}(c'(x_1,\ldots,x_n))=(k-l)^{-1}p(x_1,\ldots,x_n,I).$$

Hence, in this case $tr(c'(x_1, ..., x_n))$ equals a central polynomial modulo the identities for $M_{k,l}$, and so (*) is true in this case. To see that (*) is false if $k \neq l$ it is useful to have the following lemma.

LEMMA 1. Let $f(x_1, \ldots, x_n)$ be a pure trace identity for $M_{k,k}$ and write $f(x_1, \ldots, x_n) = f_0(x_1, \ldots, x_n) + f_1(x_1, \ldots, x_n)$, where each monomial in f_0 involves an even number of traces and each monomial in f_1 involves an odd number of traces. Then $f_0(x_1, \ldots, x_n)$ and $f_1(x_1, \ldots, x_n)$ are each trace identities for $M_{k,k}$.

Proof. We define an automorphism on $M_{k,k}$. Let $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$ be an element of $M_{k,k}$, where A, B, C and D are $k \times k$ blocks, and